
Anticipation as a Mechanism for Complex Behavior in Artificial Agents

Heinrich Mellmann, Benjamin Schlotter, Lea Musiolek and Verena V. Hafner

Adaptive Systems Group, Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
mellmann@informatik.hu-berlin.de

Abstract

Anticipation is a skill that enables complex decision making
in humans and other biological agents. We review different
implementations of anticipatory behavior in robots and give
an overview on anticipation in biological systems. Based on
an example of anticipatory behavior in humanoid robots, we
discuss decision making and anticipation in artificial agents.
We show that anticipation can enable fast decisions in highly
dynamic and complex situations. Our findings are supported
by experimental results performed in simulation and on real
robots in large scale experiments.

Introduction
Humans and many other biological agents are able to antici-
pate the consequences of their actions to a certain extent and
adapt their decisions based on available information on cur-
rent and future states. This makes anticipation a powerful
tool enabling complex decision making and behavior. This
should also hold for artificial agents that interact in complex
environments.

Winfield and Hafner (2018) consider anticipation in ar-
tificial agents through the mechanism of predictive internal
models which generate a prediction of a particular state in
the future. These models can generate predictions of the
self, others, and the environment, and could be either prede-
fined or learned and adapted through experience.

In robotics, the skill to self-model and to anticipate has
been demonstrated in several studies and experiments. One
of the earliest implemented in real hardware was the starfish
robot presented in Bongard et al. (2006). There, a four-
legged robot was able to simulate its locomotion and was
therefore able to adapt to changes in morphology such as re-
moved leg parts. In Mirza et al. (2008) information-theoretic
measures are used to learn a self-model of a robot from ex-
perience. In Schillaci et al. (2016), a humanoid robot learned
internal models of sensorimotor relationships through an ex-
ploratory phase inspired by infants’ body babbling. The
acquired models were used for decision making in tool-
use as presented in Schillaci et al. (2012). In Matsumoto
and Tani (2020) predictive coding and active inference is
used for goal directed planning with only partial knowledge.

Anticipation has also been studied in human-robot interac-
tion scenarios on an iCub robot, implementing human inten-
tion reading (Duarte et al., 2018) and multi-modal models
(Dermy et al., 2019).

Other approaches do not learn a self-model of the robot
but directly predict the consequences of both its own actions
and those of others. Blum et al. (2018) showed that such
a mechanism improves the safety for a scenario in which a
robot needs to traverse a corridor without bumping into hu-
mans and other robots. In Mellmann and Schlotter (2017);
Mellmann et al. (2017), forward simulations in soccer play-
ing robots allow for fast decision making.

Anticipation in Biological Systems
Anticipation plays an important role in the cognition of bio-
logical agents, and from an evolutionary perspective, it ful-
fills a number of crucial functions: It provides additional
information to help the decision making process, in order to
plan next actions or changes of actions. It facilitates sensory
attenuation, and it guides attention mechanisms. In this pa-
per, we focus on the first aspect related to decision making.

In recent decades, cognitive neuroscience has turned its
attention to the predictive capacities of biological agents.
Wolpert and Kawato (1998) proposed the existence of an
internal representation of sensory inputs and motor output
signals in the brain responsible for sensorimotor prediction
processes. Recent research found evidence for neural repre-
sentations of probabilistic predictions in human brain imag-
ing data (Aitchison and Lengyel (2017), Kopp et al. (2016),
Ostwald et al. (2012)) as well as in human nonverbal social
behaviour (Candidi et al. (2015); Pezzulo et al. (2017)). In
Devaine et al. (2014), an economic gaming experiment with
model comparisons showed an advantage for agents with
”mentalizing” skills realized as recursive Bayesian predic-
tions. Interestingly, humans were able to recruit these abil-
ities only when they believed they were playing against a
human opponent. Recursive Bayesian predictions were also
used in Bordallo et al. (2015), where artificial agents ob-
serve and predict the movement of other agents by attribut-
ing a goal position to each observed agent. One of the most



Figure 1: Situation from a robot soccer game. The robot at
the ball simulates possible outcomes of three different kick
actions illustrated by circles of different colors. The selected
action is depicted by the red arrow.

notable attempts to unify predictive approaches is the Free-
energy principle (Friston, 2010). Nasuto and Hayashi (2016)
discuss anticipation as a bridging concept between philoso-
phy, and biological and cognitive sciences.

Experimental Setup and Results
In this section, we discuss experimental results demonstrat-
ing how anticipation and internal simulation can be used
to realize complex behavior in artificial agents presented in
Mellmann and Schlotter (2017) and Mellmann et al. (2017).
The approach is inspired by the decision problem within
the RoboCup domain, where humanoid robots are playing
soccer autonomously and have to perceive the environment,
make decisions and execute actions in real time.

Consider a simple situation in which a robot is approach-
ing a ball on the soccer field and is faced with a decision
to select from a number of discrete actions, e.g., front kick,
side kick, and a continuous action - adjusting the direction
by turning around the ball. Despite the apparent simplicity,
this task can present a significant challenge in a complex si-
tuation of a soccer game. The outcome of a particular action
may depend on a wide variety of environmental factors, such
as the robot’s position on the field or the location of other
players. In addition, the robots’ perception of the situation
is often uncertain, noisy and incomplete, and execution of
the actions is subject to noise and uncertainty as well.

The overall decision process can be split into three distinct
phases: predict, evaluate and decide. The robot envisions
the possible outcomes of the available actions. Each of the
outcomes is evaluated and the option with the best outcome
is selected. In this particular scenario the predicted outcome
of a kick action is the final position of the ball.

In order to deal with computational complexity of the un-
certainty, the simulation of an action is split into a number of
simple deterministic simulations (samples) in a Monte-Carlo
fashion based on the uncertainties in the estimated state and

in the model of the action. Stripped of the uncertainty the
prediction of the individual possible positions of the ball and
their respective evaluation become significantly simplified.
The individual evaluations are recombined to represent the
uncertainty in the outcome of the action and are compared
with those of other actions to inform the overall decision.
Figure 1 illustrates the decision process in a game situation.

The decision scheme has been implemented and evalu-
ated in simulation as well as on real robots in a competition
setting. Simulated experiments have shown that a robust de-
cision can already be achieved with a small number of sam-
ples. To enable evaluation under real world conditions, a
data set consisting of videos of the games, perceptual infor-
mation and behavior states of the robots was collected from
a series of games during international competitions. The de-
cisions made by the robots were annotated qualitatively by
a human operator. The results presented in Mellmann et al.
(2017) have shown that even in its simple form the decision
scheme is able to provide fast and robust decisions outper-
forming a rule based baseline.

Our ongoing work is focused on including simulation of
decisions of other players (2nd level anticipation) and anal-
ysis of the emergent cooperative and antagonistic behavior.

Discussion
The results of the experiments have shown that anticipation
and forward simulation can provide a versatile and extensi-
ble yet simple mechanism for inference of decisions.

An open question is still how to evaluate anticipatory be-
haviour. Certain behavior observed in biology that may ap-
pear anticipatory to an outside observer might be purely re-
active in nature. More precisely, is it possible to distinguish
whether observed behaviour of (biological) agents has been
generated by an explicit predictive mechanism or by sim-
ple reactive responses? An approach would be the compar-
ison of the performance of reactive and predictive models.
If models equipped with predictive capacities outperformed
ones with purely reactive skills at explaining observed be-
havior, this would suggest that the underlying mechanism is
anticipatory. Suitable experiments for future studies could
involve obstacle avoidance and leader-follower behavior.

It would be also interesting to study under which circum-
stances implicit anticipatory behaviour can emerge. The ev-
idence from observations in biological systems as well as
from experiments with artificial agents underlines the impor-
tance of anticipation as a mechanism for behavior. It could
be speculated that anticipation necessarily emerges in cog-
nitive systems with enough complexity.
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