
Constraint Based Localization on a Humanoid
Robot

(Extended Abstract)

Daniel Göhring, Heinrich Mellmann, and Hans-Dieter Burkhard

Institut für Informatik,
Humboldt-Universität zu Berlin,

Unter den Linden 6,
10099 Berlin, Germany

Abstract. In this paper we will present an application for constraint
based methods to self localize within the RoboCup domain. During a
robotic soccer game, robots of a team need to know where they and their
team mates are on the field, therefore they need to localize themselves.
For self localization, constraint based methods can be an effective alter-
native to classic Bayesian approaches as Kalman filters or Monte-Carlo
methods. In this paper we will present, how constraint based techniques
can be applied to a humanoid robot. Therefore we will implement con-
straint based methods in a humanoid robot ”NAO” and see how the
constraint based approach works within the Standard Platform League.

1 Introduction

Self localization and object tracking is crucial for a mobile robot. Especially
when sensing capabilities are limited a short term memory about the surround-
ing is required. Thus modeling techniques have widely been researched in the
past. Common approaches use Bayesian algorithms [4] as Kalman [5] or particle
filters [2]. Under some circumstances, when sensor data is sparse and compu-
tational power is limited, those approaches can show disadvantages. Complex
belief functions are hard to represent for Kalman filters which use Gaussians,
particle filters don’t have this limitation but need a high number for approxi-
mating the belief, resulting in high computational needs which often cannot be
satisfied. We tackle this problem by using constraints for sensor data and belief
representation. Constraint based modeling approaches have been proposed for
localization in [7], or for slam map building in [6]. Constraint based approaches
have several advantages: a) constraints are easy to create and to store. b) they
have a high representational power, c) combining different constraints is com-
putationally cheap. In this paper we discuss constraint propagation methods for
solving navigation problems. The main difference to classical propagation is due
to the fact that navigation tasks do always have a solution in reality.

145

1.1 Motivation

In many domains landmarks are very sparsely arranged. In RoboCup landmarks
like beacons were more and more removed during the last years. Other sensor
data like field line information has to be used for self localization. We found out
that seeing one field line results in a complex belief function which is hard to rep-
resent by a Gaussian or by a small set of samples as in Monte-Carlo approaches.
Therefore we developed this constraint based representation method.

1.2 Outline

We will show how a constraint based localization can be implemented within
the RoboCup Legged league. Furthermore we will compare the constraint based
approach to a Monte-Carlo Particle Filter. We will use real robot sensor data and
will discuss thereby how noisy and inconsistent sensor data can be considered
for constraint localization.

2 Perceptual Constraints

A constraint C is defined over a set of variables v(1), v(2), ..., v(k). It defines the
values those variables can take:

C ⊆ Dom(v(1))× ...×Dom(v(k))

We start with an example from the Legged league where the camera image of
a robot shows a goal in front and the ball before the white line of the penalty area
(Figure 1). It is not too difficult for a human interpreter to give an estimate for
the position (xB , yB) of the ball and the position (xR, yR) of the observing robot.
Humans can do that, regarding relations between objects, like the estimated
distance dBR between the robot and the ball, and by their knowledge about the
world, like the positions of the goalposts and of the penalty line.

The program of the robot can use the related features using image processing.
The distance dBR can be calculated from the size of the ball in the image, or from
the angle of the camera. The distance dBL between the ball and the penalty line
can be calculated, too. Other values are known parameters of the environment:
(xGl, yGl), (xGr, yGr) are the coordinates of the goalposts, and the penalty line
is given as the set of points {(x, bPL)|−aPL ≤ x ≤ aPL}. The coordinate system
has its origins at the center point, the y-axis points to the observed goal.

The relations between the objects can be described by constraints. The fol-
lowing four constraints are obvious by looking to the image, and they can be
determined by the program of the observing robot:

C1: The view angle γ between the goalposts (the distance between them in
the image) defines a circle (periphery circle), which contains the goal posts
coordinates (xGl, yGl), (xGr, yGr) and the coordinates (xR, yR) of the robot:

{(xR, yR)| arctan
yGl − yR

xGl − xR
− arctan

yGr − yR

xGr − xR
= γ}

146

Fig. 1. Example from RoboCup (Standard Platform League): A robot is seeing a goal
and the ball in front of a penalty line. The right picture shows the resulting robot
positions represented by the periphery circle according to C1, and the line of the Ball-
Line-Constraint C2.

C2: The ball lies in the distance dBL before the penalty line. Therefore, the ball
position must be from the set

{(xB , yB)|xB ∈ [−aPL, aPL], yB = bPL − dBL}

C3: The distance dBR between the robot and the ball defines a circle such that
the robot is on that circle around the ball:

(xB − xR)2 + (yB − yR)2 = d2
BR

.
C4: The observer, the ball and the left goal post are on a line:

xR − xB

yR − yB
=
xB − xGl

yB − yGl

The points satisfying the constraints by C1 (for the robot) and by C2 (for the
ball) can be visualized immediately on the playground as in Figure 1.

The constraint by C3 does not give any restriction to the position of the ball.
The ball may be at any position on the playground, and then the robot has a
position somewhere on the circle around the ball. Or vice versa for reasons of
symmetry: The robot is on any position of the playground, and the ball around
him on a circle. In fact, we have four variables which are restricted by C3 to a
subset of a four dimensional space. The same applies to constraint C4.

The solution (i.e. the positions) must satisfy all four constraints. We can con-
sider all constraints in the four dimensional space of the variables (xB , yB , xR, yR)
such that each constraint defines a subset of this space. Then we get the following
constraints:

C1 = {arctan
yGl − yR

xGl − xR
− arctan

yGr − yR

xGr − xR
= γ} (1)

C2 = {(xB ∈ [−aPL, aPL], yB = bPL − dBL} (2)
C3 = {(xB − xR)2 + (yB − yR)2 = d2

BR} (3)

C4 = {xR − xB

yR − yB
=
xB − xGl

yB − yGl
} (4)

147

Fig. 2. Left: The picture shows the Constraint C2 for the ball, some of the circles
according to constraint C5, some of the lines according to C4, and the resulting two
lines for C6 (bold black lines). Right: Constraints according to C7: The position of the
robot is one of the four intersection points between the periphery circle (C1) and the
lines according to C6.

Thus the possible solutions (as far as determined by C1 to C4) are given by the
intersection

⋂
1,...,4 Ci. According to this fact, we can consider more constraints

C5, . . . , Cn as far as they do not change this intersection, i.e. as far as
⋂

1,...,n Ci =⋂
1,...,4 Ci . Especially, we can combine some of the given constraints.

By combining C2 and C3 we get the constraint C5 = C2 ∩ C3 where the
ball position is restricted to any position on the penalty line, and the player is
located on a circle around the ball. Then, by combining C4 and C5 we get the
constraint C6 = C4 ∩ C5 which restricts the positions of the robot to the two
lines shown in Figure 2 (left).

Now intersecting C1 and C6 we get the constraint C7 with four intersection
points as shown in Figure 2 (right). According to the original constraints C1

to C4, these four points are determined as possible positions of the robot. The
corresponding ball positions are then given by C2 and C4.

To find the real positions, we would need additional constraints from the
image, e.g. that the ball lies between the robot and the goal (which removes one
of the lines of C6), and that the robot is located on the left site of the field (by
exploiting perspective).

3 Formal Definitions of Constraints

We define all constraints over the set of all variables v(1), v(2), ..., v(k) (even if
some of the variables are not affected by a constraint). The domain of a variable
v is denoted by Dom(v), and the whole universe under consideration is given by

U = Dom(v(1))× · · · ×Dom(v(k))

For this paper, we will consider all domains Dom(v) as (may be infinite)
intervals of real numbers, i.e. U ⊆ Rk.

Definition 1. (Constraints)

148

1. A constraint C over v(1), ..., v(k) is a subset C ⊆ U .
2. An assignment β of values to the variables v(1), ..., v(k), i.e. β ∈ U , is a

solution of C iff β ∈ C.

Definition 2. (Constraint Sets)

1. A constraint set C over v(1), ..., v(k) is a finite set of constraints over those
variables: C = {C1, ..., Cn}.

2. An assignment β ∈ U is a solution of C if β is a solution of all C ∈ C, i.e.
if β ∈

⋂
C.

3. A constraint set C is inconsistent if there is no solution, i.e. if
⋂
C is empty.

The problem of finding solutions is usually denoted as solving a constraint
satisfaction problem (CSP) which is given by a constraint set C. By our definition,
a solution is a point of the universe U , i.e. an assignment of values to all variables.
For navigation problems it might be possible that only some variables are of
interest. This would be the case if we are interested only in the position of the
robot in our example above. Nevertheless we had to solve the whole problem to
find a solution.

In case of robot navigation, there is always a unique solution of the problem in
reality (the positions in the real scene). This has an impact on the interpretation
of solutions and inconsistencies of the constraint system (cf. Section 4.1).

The constraints are models of relations (restrictions) between objects in the
scene. The information can be derived from sensory data, from communication
with other robots, and from knowledge about the world – as in the example
from above. Since information may be noisy, the constraints might not be as
strict as in the introductory example from Section 2. Instead of a circle we get
an annulus for the positions of the robot around the ball according to C3 in
the example. In general, a constraint may concern a subspace of any dimension
(e.g. the whole penalty area, the possible positions of an occluded object, etc.).
Moreover, constraints need not to be connected: If there are indistinguishable
landmarks, then the distance to such landmarks defines a constraint consisting
of several circles. Further constraints are given by velocities: changes of locations
are restricted by the direction and speed of objects.

4 Algorithms

In principle, many of the problems can be solved by grid based techniques. For
each grid cell we can test if constraints are satisfied. This corresponds to some
of the known Bayesian techniques including particle filters.

Another alternative are techniques from constraint propagation. We can suc-
cessively restrict the domains of variables by combining constraints. We will
discuss constraint propagation in the following subsection, later we will present
experimental results for this approach.

149

4.1 Constraint Propagation

Known techniques (cf. e.g. [1] [3]) for constraint problems produce successively
reduced sets leading to a sequence of decreasing restrictions

U = D0 ⊇ D1 ⊇ D2,⊇ . . .

Restrictions for numerical constraints are often considered in the form of
k-dimensional intervals I = [a, b] := {x|a ≤ x ≤ b} where a, b ∈ U and the
≤-relation is defined componentwise. The set of all intervals in U is denoted by
I. A basic scheme for constraint propagation with

– A constraint set C = {C1, ..., Cn} over variables v(1), ..., v(k) with domain
U = Dom(v(1))× ...×Dom(v(k)).

– A selection function c : N → C which selects a constraint C for processing
in each step i.

– A propagation function d : 2U ×C → 2U for constraint propagation which is
monotonously decreasing in the first argument: d(D,C) ⊆ D.

– A stop function t : N→ {true, false}.

works as follows:

Definition 3. (Basic Scheme for Constraint Propagation, BSCP)

– Step(0) Initialization: D0 := U , i := 1
– Step(i) Propagation: Di := d(Di−1, c(i)).
– If t(i) = true: Stop.
– Otherwise i := i+ 1, continue with Step(i).

We call any algorithm which is defined according to this scheme a BSCP-
algorithm.

The restrictions are used to shrink the search space for possible solutions. If the
shrinkage is too strong, possible solutions may be lost. For that, backtracking is
allowed in related algorithms.

Definition 4. (Locally consistent propagation function)

1. A restriction D is called locally consistent w.r.t. a constraint C if

∀d = [d1, ..., dk] ∈ D ∀i = [1, ..., k]∃d′ = [d′1, ..., d
′
k] ∈ D ∩ C : di = d′i

i.e. if each value of a variable of an assignment from D can be completed to
an assignment in D which satisfies C.

2. A propagation function d : 2U × C → 2U is locally consistent if it holds
for all D, C: d(D,C) is locally consistent for C.

3. The maximal locally consistent propagation function dmaxlc : 2U × C →
2U is defined by dmaxlc(D,C) := Max{d(D,C)|d is locally consistent}.

150

a) b) c)

x

y

Ix(D C)

I y(
D

C

)
D

C

x

y

Ix(D C)

I y(
D

C
) D

C

x

y

Fig. 3. Constraint propagation with intervals D for a) two rectangular constraints C
b) a rectangular and a circular constraint C, resulting in a constraint consisting of two
rectangular areas. Intervals of Projection w.r.t. C∩D are illustrated. c) Two constraints
consisting of two boxes each are intersected with each other, resulting constraints de-
picted as bold red squares

Since the search for solutions is easier in a more restricted search space (as
provided by smaller restrictions Di), constraint propagation is often performed
not with dmaxlc, but with more restrictive ones. Backtracking to other restric-
tions is used if no solution is found.

For localization tasks, the situations is different: We want to have an overview
about all possible poses. Furthermore, if a classical constraint problem is incon-
sistent, then the problem has no solution. As already stated, for localization
problems always exists a solution in reality (the real poses of the objects under
consideration) so we must be careful not to loose solutions.

Definition 5. (Conservative propagation function)
A propagation function d : 2U × C → 2U is called conservative if D ∩ C ⊆

d(D,C) for all D and C.

Note that the maximal locally consistent restriction function dmaxlc is con-
servative. We have:

Proposition 6. Let the propagation function d be conservative.

1. Then it holds for all restrictions Di :
⋂
C ⊆ Di.

2. If any restriction Di is empty, then there exists no solution, i.e.
⋂
C = ∅.

If no solution can be found, then the constraint set is inconsistent. There
exist different strategies to deal with that:

– enlargement of some constraints from C,
– usage of only some constraints from C,
– computation of the best fitting hypothesis according to C.

151

As already mentioned above, n-dimensional intervals are often used for the re-
strictions D, since the computations are much easier. Constraints are intersected
with intervals, and the smallest bounding interval can be used as a conservative
result. Examples are given in Fig. 3.

While local consistency is the traditional approach (to find only some solu-
tions), the approach with conservative intervals is more suited for localization
tasks because it can be modified w.r.t. to enlarging constraints during propaga-
tion for preventing from inconsistency.

Now we want to present a constraint propagation scheme. The stop condition
compares the progress after processing each constraint once.

Algorithm 1: Constraint Propagation with Minimal Conservative Inter-
vals, MCI-algorithm

Input: constraint set C = {C1, ..., Cn} with variables V = {v1, ..., vk} over
domain U and a time bound T

Data: D ← U , s← 1, Dold ← ∅
Result: minimal conservative k-dimensional interval D

while s < T & D 6= Dold do1

Dold ← D;2

foreach C ∈ C do3

foreach v ∈ V do4

D(v)← Iv(D ∩ C);5

end6

D ← D(v1)× · · · ×D(vn);7

end8

s← s+ 1;9

end10

Looking closer to the possible intersections of constraints (e.g. to the inter-
section of two circular rings or to the intersection of a circular ring with an
rectangle like in Fig. 3a), the sets D ∩ C might be better approximated by sets
of intervals instead of a single interval (see Fig. 3 b)). Thus, the algorithm was
extended for implementation this way: The input and the output for each step
are sets of intervals, and all input intervals are processed in parallel. For such
purposes the propagation function d of the BSCP could be defined over sets
as well. As in other constraint propagation algorithms, it might lead to better
propagation results if we split a given interval to a union of smaller intervals. In
many cases, when using more constraints, the restrictions end up with only one
of the related intervals anyway.

Using Odometry data. When the robot moves, in self-localization it shifts the
constraint boundaries into to movement direction. The odometry noise results
in an enlargement of the shifted constraints to pay tribute to slippery ground,
collisions and walking noise. The appropriate constraint enlargement was found
experimentally.

152

a) b)

0

005

0001

0051

0002

0052

0002005100010050

1 deg.

5 deg.
3 deg.

distance in mm

m
m

ni r
orre t

n e
m er

u sae
m

Fig. 4. The effect of the error in the bearing measurement on the calculated distance
is illustrated.

4.2 Constraint Generation and Sensor Errors

The shape of constraints depends on several parameters. Given a line constraint,
the shape of the constraints depends on the number and size of lines within the
robots environment. Furthermore the distance to a line is important to estimate
the sensor error, i.e., the error of far away lines is bigger than to close lines. The
distance error has many causes, the most important one is the bearing angle
error, caused by walking motions, which leads to a changing alignment of the
robot body to the ground. In Fig. 4 one can see the coherence of object distance
and measurement error, given a certain bearing angle error.

4.3 Handling Inconsistencies

When performing real robot experiments, we realized that many constraints were
based on noisy sensor data, resulting to inconsistencies. We dealt with that in the
following way: We distinguished sensor data that was consistent to the current
belief from inconsistent data, calling it the inconsistent data ratio IDR. When
IDR was low, updating the belief used consistent sensor data only, resulting
in a stable localization. But when new sensor data became inconsistent, e.g.
as in kidnapped robot problem, resulting in a very large IDR, we added that
inconsistent data to the belief constraints as well, enabling the robot belief to
converge to the new position. For deciding what to do we used a threshold value.

5 Experimental Results

In our experiments within the RoboCup soccer domain (see section 2), we com-
pared an implementation of a Monte-Carlo particle filter (MCPF) with the con-
straint based algorithm described above. We had our focus on calculation time
and on localization accuracy.

We used constraints given by fixed objects like goalposts, flags and field
lines identified in the images by the camera of the robot. The creation of the

153

a) b)

Fig. 5. Robot situated on a soccer field. Bold black lines depict the line segment seen
by the robot. a) Gray boxes illustrate a constraint generated from only one seen line
segment. b) Two constraints are generated from perceived lines (not in the figure),
black boxes depict the resulting constraint after propagation of the two constraints.

related constraints was done as follows: distances to landmarks are defined by
circular rings, where only the distances derived from the vision system of the
robot and the standard deviation of the measurement error have to be injected.
Constraints given by observed field lines are defined by a set of rectangles and
angles (Fig. 5 a)), the distances and the horizontal bearings are sufficient to
define these constraints. All this can be done automatically. An example for
constraints generated from lines and their propagation is given in 5 b).

During our experiments we let a robot move on a predefined path. Then
we compared the modeled position with the ground truth position and calcu-
lated the localization error. Furthermore we measured in every time step the
calculation time. As reference algorithm we used a Monte-Carlo particle filter.

100 150 200 250 300
0

 1

 2

 3

 4

Update Steps

Constraint Self Locator

Monte Carlo Self Locator

C
al

cu
la

ti
o

n
 T

im
e

in
 m

s

Fig. 6. Calculation time for one modeling step on a 1.5 GHz processor. Gray line:
Monte Carlo particle filter, using 100 samples. Black line: Calculation time per step
using the constraint based algorithm.

154

a) b)

Fig. 7. Localization accuracy experiment. A robot is walking on the field in a circle a)
Monte-Carlo Particle filter based localization, the straight reference line is shown as
well under the modeled localization trace. b) Constraint based localization.

The time measurement data showed that the constraint based algorithm
(MCI) algorithm works about 5-10 times faster than the particle filter (see
Fig. 6). It also showed that the calculation time for the particle based approach
is varying much more than for the constraint based approach.

In a further experiment we measured the localization accuracy for both ap-
proaches (Fig. 7). Most of the time the accuracies were comparable. Sometimes
the constraint based approach was more sensible to noisy sensor data, which
resulted in slightly jumping positions, as Fig. 7 b) shows. In future work we will
investigate how the position can be more stabilized over time.

In another experiment we investigated more ambiguous data (i.e. when only
few constraints are available as in Fig. 5). In this case, the constraint based ap-
proach provided a much better representation of all possible positions (all those
positions which are consistent with the vision data). The handling of such cases
is difficult for particle filters because many particles are necessary for represent-
ing large belief distributions. Related situations may appear for sparse sensor
data and for the kidnapped robot problem.

6 Conclusion

Constraint propagation techniques are an interesting alternative to probabilistic
approaches. From a theoretical point of view, they could help for better under-
standing of navigation tasks at all. For practical applications they permit the
investigation of larger search spaces employing the constraints between various
data. Therewith, the many redundancies provided by images and other sensor
data can be exploited better.

This paper has shown how sensor data can be transformed into constraints.
We presented an algorithm for constraint propagation and discussed some differ-
ences to classical constraint solving techniques. In our experiments, the algorithm

155

outperformed approaches like particle filters with regard to calculational needs.
The localization quality of both algorithms was comparable when many land-
marks were seen. In case of fewer landmarks only the constraint based approach
was able to represent the resulting belief properly, which was caused by the lack
of samples within the particle filter.

Future work will include more investigations on algorithms and further com-
parisons with existing Bayesian techniques. In addition we want to check, how
constraint based techniques can be applied to multiple target tracking with non-
unique targets.

References

1. E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32,
1987.

2. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization for mobile
robots. In Proceedings of the 1999 IEEE International Conference on Robotics and
Automation (ICRA), volume 2, pages 1322–1328. IEEE, 1999.

3. F. Goualard and L. Granvilliers. Controlled propagation in continuous numerical
constraint networks. ACM Symposium on Applied Computing, 2005.

4. J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental compar-
ison of localization methods. In Proceedings of the 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 1998.

5. R. Kalman. A new approach to linear filtering and prediction problems. Transac-
tions of the ASME - Journal of Basic Engineering, 82:35–45, 1960.

6. E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs with
poor initial estimates. In International Conference on Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE, 2006.

7. A. Stroupe, M. Martin, and T. Balch. Distributed sensor fusion for object posi-
tion estimation by multi-robot systems. In A. Bredenfeld, A. Jacoff, I. Noda, and
Y. Takahashi, editors, Proceedings of the 2001 IEEE International Conference on
Robotics and Automation (ICRA-01), Lecture Notes in Artificial Intelligence, pages
154–165. Springer, 2001.

156

	csp2008_submission_38.pdf

