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Abstract Time series classification tries to mimic the human understanding of
similarity. When it comes to long or larger time series datasets, state-of-the-art
classifiers reach their limits because of unreasonably high training or testing times.
One representative example is the 1-nearest-neighbor DTW classifier (1-NN DTW)
that is commonly used as the benchmark to compare to. It has several shortcom-
ings: it has a quadratic time complexity in the time series length and its accuracy
degenerates in the presence of noise. To reduce the computational complexity,
early abandoning techniques, cascading lower bounds, or recently, a nearest cen-
troid classifier have been introduced. Still, classification times on datasets of a
few thousand time series are in the order of hours. We present our Bag-Of-SFA-
Symbols in Vector Space (BOSS VS) classifier that is accurate, fast and robust to
noise. We show that it is significantly more accurate than 1-NN DTW while being
multiple orders of magnitude faster. Its low computational complexity combined
with its good classification accuracy makes it relevant for use cases like long or
large amounts of time series or real-time analytics.

Keywords Time Series · Classification · Data Mining · Symbolic Representation

1 Introduction

Time series are a collection of values sequentially recorded from sensors or live
observations over time. In the last decades there has been an enormous increase in
data volumes and it is expected to reach 100 zettabytes (1021) by 2020 [1]. At the
same time, sensors for recording time series have become cheap and omnipresent
as in RFID chips, wearable sensors (wrist bands, smartphones), smart homes [2],
or event-based systems [3]. A smart-meter with a sampling rate of one value per
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Train Complexity Test Complexity Accuracy

lower bound upper bound

1-NN ED [4] - Ω(n+N) O(Nn)

Shapelets [5,6,7] O(N2n3) to O(Nn2) O(n) +/++

1-NN DTW [8,4] - Ω(n2 +N) O(Nn2) +

1-NN DTW CV [8,4] O(N2n2) Ω(nr +N) O(Nnr) +

SVM O(N2n) to O(N3n) O(n) +

Shotgun Classifier [9] O(N2n3) Ω(n2 +N) O(Nn2) +

Ensemble PROP [10] O(N2n2) O(Nn2) ++

Ensemble COTE [11] O(N2n4) O(Nn2) ++

1-NN BOSS [12] O(N2n2) Ω(n+N) O(Nn) ++

1-NN BOSS VS O(Nn
3
2 ) O(n) +

Table 1 Computational complexity (upper O(...) and lower bounds Ω(...)) of state-of-the-art
classifiers for n=length, N=number of time series, r=warping window constraint.

minute records more than 0.5 million values a year. Given a company with millions
of customers, this accounts for trillions (1012) of measurements. A goal is to extract
hidden knowledge from that raw data.

The availability of the UCR time series benchmark datasets [13] has led to a
wealth of time series classification algorithms. The classification accuracy has been
the key metric to evaluate new time series classification methods [10,14]. The
use of the UCR datasets has led to unreasonable high computation complexities
(Table 1), as the largest datasets contain only a few thousand time series of a few
thousand values length. A key challenge is to provide scalability in classification

times with high accuracy. Common classifiers are 1-Nearest Neighbor Dynamic
Time Warping (1-NN DTW), the 1-NN Euclidean Distance (1-NN ED) or most
recently our noise robust 1-NN Bag-of-SFA-Symbols (1-NN BOSS) classifier [12].
The 1-NN DTW classifier is commonly used as the benchmark to compare to [14,
10].

Figure 12 shows for each state-of-the-art classifier the total wall-time on 91
public time series datasets using a single CPU core. The datasets are ordered
by increasing time series length. In total the datasets account for roughly N =
50000 train and N = 100000 test time series. The 1-NN DTW classifier with a
warping window constraint (1-NN DTW CV) takes more than 2000 CPU hours
until completion, when using the state-of-the-art implementation [4]. 1-NN DTW
finishes within 80 CPU hours and it does not require training. The 1-NN BOSS
classifier [12] finishes after roughly 97 CPU hours. Our 1-NN Bag-Of-SFA-Symbols

in Vector Space (1-NN BOSS VS) classifier takes roughly 7 CPU hours, which
is one to three orders of magnitude faster. These empirical results confirm the
computational complexities in Table 1. To put a factor of 103 into relation: we can
run 1-NN DTW CV on a cluster of 4000 cores for one day [8], or spent one to two
days with 1-NN BOSS VS on commodity hardware and a 4 core CPU, resulting
in a similar or better classification accuracy.



Scalable Time Series Classification 3

Ita
ly

P
o
w

e
rD

e
m

a
n
d

sy
n
th

e
tic_co

n
tro

l
S
o
n
y
A

IB
O

R
o
b
o
tS

u
rfa

ce
II

S
o
n
y
A

IB
O

R
o
b
o
tS

u
rfa

ce
M

id
d
le

P
h
a
la

n
x
O

u
tlin

e
A

g
e
G

ro
u
p

M
id

d
le

P
h
a
la

n
x
O

u
tlin

e
C

o
rre

ct
M

id
d
le

P
h
a
la

n
x
T
W

P
h
a
la

n
g
e
sO

u
tlin

e
sC

o
rre

ct
P
ro

x
im

a
lP

h
a
la

n
x
O

u
tlin

e
A

g
e
G

ro
u
p

P
ro

x
im

a
lP

h
a
la

n
x
O

u
tlin

e
C

o
rre

ct
P
ro

x
im

a
lP

h
a
la

n
x
T
W

D
ista

lP
h
a
la

n
x
T
W

D
ista

lP
h
a
la

n
x
O

u
tlin

e
A

g
e
G

ro
u
p

D
ista

lP
h
a
la

n
x
O

u
tlin

e
C

o
rre

ct
T
w

o
Le

a
d
E
C

G
M

o
te

s
E
C

G
2
0
0

E
le

ctricD
e
v
ice

s
M

e
d
ica

lIm
a
g
e
s

S
w

e
d
ish

Le
a
f

T
w

o
_P

a
tte

rn
s

C
B

F
Fa

ce
sU

C
R

Fa
ce

A
ll

E
C

G
Fiv

e
D

a
y
s

E
C

G
5
0
0
0

G
u
n
-P

o
in

t
w

a
fe

r
C

h
lo

rin
e
C

o
n
ce

n
tra

tio
n

A
d
ia

c
W

in
e

S
tra

w
b
e
rry

A
rro

w
H

e
a
d

In
se

ctW
in

g
b
e
a
tS

o
u
n
d

W
o
rd

sS
y
n
o
n
y
m

s
W

o
rd

S
y
n
o
n
y
m

s
5
0
w

o
rd

s
T
ra

ce
T
o
e
S
e
g
m

e
n
ta

tio
n
1
 (fix

e
d
 le

n
g
th

)
C

o
ffe

e
C

ricke
t_Z

C
ricke

t_Y
C

ricke
t_X

u
W

a
v
e
G

e
stu

re
Lib

ra
ry

_Z
u
W

a
v
e
G

e
stu

re
Lib

ra
ry

_Y
u
W

a
v
e
G

e
stu

re
Lib

ra
ry

_X
Lig

h
tin

g
7

T
o
e
S
e
g
m

e
n
ta

tio
n
2
 (fix

e
d
 le

n
g
th

)
D

ia
to

m
S
ize

R
e
d
u
ctio

n
Fa

ce
Fo

u
r

P
a
ssg

ra
p
h

S
y
m

b
o
ls

y
o
g
a

O
S
U

Le
a
f

H
a
m

M
e
a
t

Fish
B

e
e
f

S
h
a
p
e
le

tS
im

Fo
rd

A
A

R
S
im

Fo
rd

B
B

ird
C

h
icke

n
B

e
e
tle

Fly
H

e
rrin

g
S
h
a
p
e
sA

ll
O

to
lith

s
E
a
rth

q
u
a
ke

s
O

liv
e
O

il
Lig

h
tin

g
2

La
rg

e
K

itch
e
n
A

p
p
lia

n
ce

s
C

o
m

p
u
te

rs
S
m

a
llK

itch
e
n
A

p
p
lia

n
ce

s
R

e
frig

e
ra

tio
n
D

e
v
ice

s
S
cre

e
n
T
y
p
e

N
o
n
In

v
a
siv

e
Fa

ta
lE

C
G

_T
h
o
ra

x
2

N
o
n
In

v
a
siv

e
Fa

ta
lE

C
G

_T
h
o
ra

x
1

W
o
rm

sT
w

o
C

la
ss

W
o
rm

s
U

W
a
v
e
G

e
stu

re
Lib

ra
ry

A
ll

P
h
o
n
e
m

e
M

A
LLA

T
S
ta

rlig
h
tC

u
rv

e
s

w
h
e
a
t

sh
ie

ld
 (v

a
ria

b
le

 le
n
g
th

)
H

a
p
tics

C
in

C
_E

C
G

_to
rso

In
lin

e
S
ka

te
stig

 (v
a
ria

b
le

 le
n
g
th

)
H

a
n
d
O

u
tlin

e
s

h
e
a
rtb

e
a
t (B

ID
M

C
)

Datasets ordered by increasing length n
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104 Cumulative Train and Test Times on all Datasets in Hours

1-NN DTW

1-NN DTW CV

1-NN BOSS VS

1-NN BOSS

1-NN Shotgun

SVM

Fig. 1 Cumulative runtime on 91 time series datasets (Table 2) using a single CPU core. The
datasets are ordered by increasing time series length.

In our previous work we introduced the Bag-Of-SFA-Symbols (BOSS) model [12].
It combines the string representation and noise tolerance of the Symbolic Fourier
Approximation (SFA) [15] representation with the bag-of-words model. First, sub-
sequences are extracted from a time series. Next, the SFA transformation is applied
to each subsequence resulting in a string (SFA word) for each subsequence. The
BOSS model is a histogram over these SFA words and thus describes the structure
of a time series. It offers a very high classification accuracy. Its computational
complexity limits its utility for large datasets.

In this work we address the scalability in classification times while maintaining
high accuracy with robustness to noise. The Bag-Of-SFA-Symbols in Vector Space

(BOSS VS) model extends the BOSS model by a compact representation of classes
instead of time series. It uses the term frequency - inverse document frequency (tf-idf)
model, which is built for each class. This significantly reduces the computational
complexity, highlights characteristic SFA words, and has an additional noise re-
ducing effect. We significantly reduce the parameter space to improve train times.
Our 1-NN BOSS VS is (a) significantly more accurate than the benchmark 1-NN
DTW classifier with or without a warping window constraint, and (b) multiple
orders of magnitude faster than the most accurate state-of-the-art classifiers. Our
contributions are as follows:

– This is the first work that compares state-of-the-art classifiers regarding clas-
sification times.

– We present the background of the SFA representation and the BOSS model in
Section 2.

– We present the 1-NN BOSS VS model that combines the noise tolerance of the
BOSS model with fast train and test times due to the use of the vector space
model in Section 3.
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– We present case studies which underline that our BOSS VS classifier is orders
of magnitude faster than state-of-the-art classifiers in Section 5.1.

– We present an exhaustive study using 91 time series datasets, which shows
that our 1-NN BOSS VS classifier is significantly more accurate than 1-NN
DTW, while being up to 4 orders of magnitude faster than state-of-the-art
(Section 5.2). The 1-NN BOSS VS classifier is among the most accurate clas-
sifiers in our experiments.

– Finally, we show the impact of our design decisions to the BOSS VS model
(Section 5.3).

2 Background and Related Work

2.1 Definitions

A time series is a sequence of nεN real values, which are recorded over time (the
time stamps are omitted):

T = (t1, . . . , tn) (1)

This time series is split into a set of subsequences, named windows hereafter,
using a windowing function.

Definition 1 Windowing: A time series T = (t1, . . . , tn) of length n is split into
fixed-size windows Si;w = (ti, . . . , ti+w−1) of length w using a windowing function.
Two consecutive windows at offset i and i+ 1 overlap in w − 1 positions:

windows(T,w) =

 S1;w︸︷︷︸
(t1,. . . ,tw)

, S2;w︸︷︷︸, . . .
(t2,. . . ,tw+1)

, Sn−w+1;w

 (2)

To obtain a consistent scale and vertical alignment (offset and amplitude invari-
ance), each window is typically z-normalized by subtracting its mean and dividing
it by its standard deviation.

2.2 From Real Values to Words

The Symbolic Fourier Approximation (SFA) [15] is a symbolic representation of
time series. That is, a real-valued time series is represented by a sequence of sym-
bols, named SFA word, using a finite alphabet of symbols. The SFA transformation
aims at:

– Noise removal: Rapidly changing sections of a signal are often associated with
noise. The SFA word length determines the number of Fourier coefficients and
thereby the bandwidth of the low-pass filter.

– String representation: It allows for string algorithms like the bag of words to
be used. The size of the quantization alphabet has an additional noise reducing
effect.

– Frequency domain: We can choose an arbitrary subset of Fourier coefficients
without recalculating the Fourier transform. Adding Fourier coefficients to an
SFA word adds details and reduces the reconstruction error between the trans-
formed and the original time series.
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Fig. 2 SFA: A time series is (a) approximated (low-pass filtered) using DFT and (b) quantized
using MCB resulting in the SFA word DAAC. [12,15]

2.3 Symbolic Fourier Approximation (SFA)

SFA has two parameters (Figure 2):

– The SFA word length l εN represents the number of Fourier coefficients for
approximation. Commonly, the first Fourier coefficients are used. A smaller
SFA word length correlates to stronger noise reduction by using less Fourier
coefficients.

– The SFA alphabet size c εN is used for quantization. A smaller alphabet size
results in stronger noise reduction.

The approximation step aims at representing a time series of length n by a trans-
formed signal of reduced length l. Higher order Fourier coefficients represent rapid
changes like dropouts or noise in a signal. The signal is low-pass filtered by using
the first l

2 � n Fourier coefficients. Quantization adds to noise reduction by divid-
ing the frequency domain into frequency bins and mapping a Fourier coefficient to
its bin. In essence MCB quantization determines equi-depth bins to map the real
and imaginary part of the Fourier coefficients separately to symbols. As part of
MCB a separate histogram for each real and imaginary part is built using all train
samples. The histograms are then partitioned using equi-depth binning. Figure 2
bottom right illustrates the SFA transformation. A time series is transformed us-
ing DFT resulting in a vector of real values (1.89,−4.73,−4.89, 0.56). The vector
is quantized to the SFA word DAAC using the precomputed MCB bins.
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Fig. 3 The BOSS model [12] is extracted from a sample time series using word length 3 and
4 symbols (a-d). The black SFA words are skipped due to numerosity reduction.

Algorithm 1 The BOSS transformation.

1 map<St r i ng , i n t> BOSSTransform ( T imeSe r i e s sample , i n t w, i n t l , i n t c , boo l
mean )

2 map<St r i ng , i n t> h i s tog ram = [ ]
3 f o r TimeSe r i e s window i n s l i d i n g w i n d ow s ( sample ,w)
4 S t r i n g word = SFA(window , l , c , mean )
5 i f word != lastWord // n u m e r o s i t y r e d u c t i o n
6 h i s tog ram [ word]++ // i n c r e a s e c o u n t s
7 l a s tWord = word
8 r e t u r n h i s tog ram

2.4 The Bag-of-SFA-Symbols (BOSS) Model

The BOSS model describes each time series as an unordered set of windows (sub-
sequences) using SFA words. It has four parameters (Figure 3):

– The window length wεN: Represents the length of the windows.
– Mean normalization meanε[true, false]: Set to true for offset invariance.
– The two SFA parameters word length lεN and alphabet size cεN: Used for

low-pass filtering and the string representation.

The BOSS model (Algorithm 1) transforms a time series into an unordered set
of SFA words. Using an unordered set provides invariance to the horizontal align-
ment of the substructure contained in the time series (phase shift + local scaling
invariances). First, sliding windows of length w are extracted (line 3). Intuitively
w roughly represents the size of the characteristic patterns within a time series.
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Fig. 4 For SAX (top), we (a) have to recalculate all symbols (mean values), or (b) drop the
rear part of the time series when changing the word length l. For SFA (bottom), the symbols
(Fourier coefficients) of a smaller word length are always a prefix of the larger word lengths.

Each sliding window is normalized to have a standard deviation of 1 to obtain
amplitude invariance. The parameter mean determines if the mean value is to
be subtracted from each sliding window to obtain offset invariance. For example,
heartbeats should be compared using a common baseline (mean=true) but the
pitch of a bird sound can be significant for the species (mean=false). Finally, the
SFA transformation is applied to each real-valued sliding window with a length
l and an alphabet size c (line 4). In stable sections of a signal, the SFA words
of two neighboring sliding windows are very likely to be identical. Thus, the first
occurrence of an SFA word is counted and all duplicates are ignored until a new
SFA word is detected (line 6). This is called numerosity reduction [16,17].

Definition 2 Bag-Of-SFA-Symbols (BOSS): Given are a time series T , and the
SFA transformations SFAs(T ) = {SFA(S) |S εwindows(T,w, 1)} of the sliding win-
dows. The BOSS histogram (BOSS model) B : Σl → N is a function of the SFA
word space Σl to the natural numbers. The number represents the occurrences of
an SFA word within SFAs(T ) counted after numerosity reduction.

2.5 Related Work

Classical data mining algorithms like SVMs, decision trees, rotation, random
forests, or Naive Bayes have been used in the context of time series [18]. However,
these did not perform better than the 1-NN DTW classifier, which is commonly
used as the benchmark to compare to [10,14]. Its computational complexity is
O(Nn2) for dataset size N and time series length n. The best case computational
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complexity has been reduced by the use of early abandoning techniques and cas-
cading lower bounds to prune off unpromising candidates in the UCR suite [4].
These lower bounds have constant to linear time to compute with an increasing
tightness of lower bounds. Most recently a 1-NN DTW nearest centroid classifier
has been presented [19] to reduce the test complexity of 1-NN DTW to O(n) at
the cost of an excessive training complexity. The 1-NN DTW CV classifier sets a
warping window constraint through cross-validation. This reduces the test com-
plexity to O(Nnr) for warping window constraint 1

100 ≤ r ≤ 1, at the cost of an
excessive train complexity of O(N2n2).

Shapelet classifiers [5,6] extract representative variable-length subsequences
from time series and use a decision tree for classification. These classifiers have
a high computational complexity for training of O(N2n3) [5] to O(Nn2) [6]. The
1-NN Shotgun classifier [9] divides the query into disjoint subsequences and slides
each query window over the sample to find the position that minimizes the Eu-
clidean distance. The Shotgun classifier has a high O(N2n3) complexity for train-
ing. Both, Shapelet and the Shotgun Classifier are based on the Euclidean distance
and are therefore sensitive to noisy data. Learning Shapelets (LS) [7] consider the
Shapelets to be parameters to be optimized, rather than extracting the candidate
Shapelets from the training dataset. It can generate arbitrary Shapelets, that build
a hyperplane for classification.

Our previously published BOSS model [12] is based on the Symbolic Fourier
Approximation (SFA) [15] and the bag-of-words model. SFA is a symbolic repre-
sentation of time series like Symbolic Aggregate approXimation (SAX) [17]. Unlike
SAX, which uses mean values (PAA) to approximate a time series, SFA uses DFT
coefficients. Both, have a noise canceling effect. The resolution of SFA can be dy-
namically adapted by choosing any arbitrary subset of Fourier coefficients without
recalculating the DFT of a time series (Figure 4). In contrast, mean values have to
be recalculated when changing the resolution - i.e. from weekly to monthly mean
values. The computational complexity limits its utility for large or long datasets.

The bag-of-patterns (BOP) model [16] is the closest to the BOSS model. BOP
extracts substructures as higher-level features of a time series. BOP transforms
these substructures using SAX for quantization and the Euclidean distance as
similarity metric. SAX-VSM [20] is the successor of the BOP model. It extends
the BOP model by the use of the tf-idf weighing of the bags and Cosine similarity
as similarity metric. It uses one bag of words for each class, instead of one bag
for each sample. SAX-VSM has a huge parameter space of O(n2) parameters and
has to recalculate all SAX coefficients for each new set of parameter. This results
in an unreasonably high train time of O(Nn3). The bag-of-features framework
(TSBF) [21] extracts random subsequences at random lengths from a time series
and builds a supervised codebook generated from a random forest classifier. Its
computational complexity relates to the complexity of the random forest classifier
and the number of time series subsequences extracted.

Ensemble classifiers utilize other classifiers. These have the computational com-
plexity of the slowest used classifier, as these have to train and run all classifiers
to predict a label. The Elastic Ensemble (PROP) classifier [10] builds an ensem-
ble of 11 classifiers including 1-NN DTW CV, 1-NN DTW, 1-NN LCSS, 1-NN
ED, Shapelets, etc. The COTE ensemble [11] classifier is based on an ensemble
of 35 classifiers and feature extraction techniques. It maximizes the classification
accuracy at the cost of an enormous computational complexity.
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Fig. 5 From a time series to the BOSS VS model.

Time series bitmaps [22] are a time series representation. First, subsequences
are extracted and transformed using SAX. This first step is equivalent to the BOP
model. Next, even smaller sub-words are extracted from each SAX word. The
counts of sub-words are arranged in a grid. Like BOP, SAX-VSM and the BOSS
model it applies noise reduction and is suited for long time series. The approach
differs from the others as it counts sub-words rather than directly using the count
of words. Bitmaps have been used as a visualization tool, but also for anomaly
detection, clustering and classification on two long time series datasets. We focus
on classification. For the two datasets used in [22] our 1-NN BOSS VS achieves a
perfect 100% classification accuracy. The count of sub-words is not applicable to
the BOSS VS model, as each Fourier coefficient corresponds to a specific frequency
and cannot be reordered arbitrarily.

In contrast our 1-NN BOSS VS has a small parameter space with just O(
√
n)

parameters, leading to very low train times, and uses a compact representation
of classes, leading to a low test complexity of just O(n). Its accuracy is very
competitive when compared to state of the art.

3 The BOSS in Vector Space: A Noise-Robust Similarity Model for Long

and Large Time Series Datasets

3.1 Motivation

The BOSS VS model combines the BOSS model with the vector space model.
The vector space model has first been introduced for representing text documents
as vectors of keywords. The Cosine similarity is used to compare the similarity
of documents. Since then it has been applied to other domains like audio [23] or
time series retrieval [16,20]. In the vector space model the term frequency inverse

document frequency (tf-idf ) model is often used [24]. The term frequency refers to
the occurrence of words in a document. The tf-idf measure is used to weigh the term
frequencies in the vector to give a higher weight to representative terms (words)
of a class. In our model the term is an SFA word and a document corresponds to
a time series.

Figure 5 illustrates the BOSS VS model: First, a time series is transformed to
its BOSS model (Section 2.4). Next, a tf-idf vector is computed for each class label,
as opposed to each time series. The tf-idf vector serves as a model for each class.
It has several advantages:
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Fig. 6 Columns from left to right: The SFA word frequencies are stored in the BOSS his-
tograms for each time series (center). Next, the tf-idf vectors are constructed for each class
(right).

1. It is suited for long time series as it extracts subsequences and compares two
time series based on their structural similarity;

2. It applies noise reduction by the use of SFA;
3. It provides invariances to phase shifts, local scaling, offsets, amplitudes, and

occlusions;
4. It is fast as it uses a compact representation of classes instead of time series.

It thereby minimizes the influence of erroneous and extraneous data within a
single time series, and significantly reduces the computational complexity;

5. SFA words that occur frequently across all classes are given a lower idf weight.
This adds to the occlusion invariance and has a noise reducing effect.

Properties (1) to (3) were introduced with the BOSS model [12]. The BOSS VS
model adds properties (4) and (5) to the BOSS model.

3.2 The BOSS VS Model

Our BOSS VS model (Figure 6) has the same four parameters as the BOSS model:

– The window length w εN: Represents the size of the substructures.
– Mean normalization mean ε [true, false]: Set to true for offset invariance.
– The SFA word length l εN and alphabet size c εN: Used for low-pass filtering

and the string representation.
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First, each time series is transformed to its BOSS histogram. Next, the tf-idf matrix
is constructed using all BOSS histograms. It contains one tf-idf vector for each class
(Cylinder, Bell, Funnel in Figure 6).

We use an approach presented in [20] and calculate the inverse document fre-

quency (idf ) for each class as opposed to each time series. The term frequency (tf )
for an SFA word t of a time series T is given by:

tf(t, T ) =

{
1 + log(BT (t)) , if BT (t) > 0

0 , otherwise
(3)

with BT (t) being the BOSS histogram, which represents the frequency of an
SFA word t in the specific time series T . In the same manner the term frequency

(tf) for an SFA word t within a class C is given by:

tf (t, C) =

{
1 + log(

∑
TεC BT (t)) , if

∑
TεC BT (t) > 0

0 , otherwise
(4)

The inverse document frequency (idf) captures how relevant an SFA word is
across all time series T within a class C:

idf (t, C) = log(1 +
|CLASSES|

|{C |TεC ∧BT (t) > 0}|︸ ︷︷ ︸
number of classes that contain t

) (5)

This idf for an SFA word represents the total number of classes divided by the
number of classes this SFA word occurs in. A high idf value is obtained by SFA
words that occur only in a specific class.

The tf-idf of an SFA word t within a class C is thus defined as:

tfidf (t, C) = tf (t, C) · idf (t, C) (6)

= (1 + log(
∑
TεC

BT (t))) · log(1 +
|CLASSES|

|{C |TεC ∧BT (t) > 0}|
) (7)

High tf-idf weights are obtained by SFA words with a high frequency that
occur only in a specific class. Thus, SFA words that are common within all classes
receive a low weight and are thereby filtered out.

3.3 The BOSS VS Distance

The similarity of a tf vector of query Q to an tf-idf class vector of sample C can
then be computed using the Cosine similarity metric:

DBOSSV S(Q,C) =

−→
Q ·
−→
C∥∥∥−→Q∥∥∥ · ∥∥∥−→C ∥∥∥ =

∑
tεQ tf (t, Q) · (tfidf (t, C) + 1)√∑

tεQ(tf (t, Q))2
√∑

tεC(tfidf (t, C))2
(8)

3.4 Computational Complexity:

The BOSS model: The BOSS model has a computational complexity that is linear
in the time series length n [12] :

T (BOSS) = O(n)
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Algorithm 2 Predict: 1-NN classification using the BOSS VS model.

1 S t r i n g p r e d i c t (map<St r i ng , i n t> t f , map<St r i ng , i n t > [ ] t f I d f s )
2 ( double maxSim , S t r i n g b e s t C l a s s ) = (0 , NULL)
3 f o r i n t c l a s s I d i n [ 1 . . l e n ( t f I d f s ) ] // s e a r c h c l a s s e s
4 double cosSim = dotProduct ( t f , t f I d f s [ c l a s s I d ] )
5 i f cosSim > maxSim // s t o r e t h e b e s t c l a s s
6 (maxSim , b e s t C l a s s ) = ( cosSim , c l a s s I d )
7 r e t u r n l a b e l ( b e s t C l a s s )

Algorithm 3 Fit: Train the parameters using leave-one-out cross-validation.

1 ( i n t , i n t , i n t , map<St r i ng , i n t>) f i t ( T imeSe r i e s [ ] samples , boo l mean )
2 i n t maxL=16, i n t c=4
3 i n t bes tCor=0, i n t bes tL=0, i n t bestW=0
4 map<St r i ng , i n t > [ ] b e s t T f I d f s = [ ]
5 f o r ( i n t w = 10 ; w <= n ; w += sq r t (n−10) ) // i t e r a t e s q r t ( n ) window

l e n g t h s
6 map<St r i ng , i n t > [ ] sH i s t = [ ]
7 f o r i n t i i n [ 1 . . l e n ( samples ) ] // o b t a i n t h e bags
8 sH i s t [ i ] = BOSSTransform ( samples [ i ] , w, maxL , c , mean )
9 f o r i n t l i n [ maxL , . . . , 8 , 6 , 4 ] // t e s t a l l word l e n g t h s

10 map<St r i ng , i n t > [ ] bags = c r ea t eH i s t og r am ( sH i s t , f )
11 map<St r i ng , i n t > [ ] t f I d f s = c a l c T f I d f ( bags , l ) // t f−i d f m a t r i x
12 i n t c o r r e c t=0
13 f o r i n t q Id i n [ 1 . . l e n ( samples ) ] // l e a v e−one−out
14 S t r i n g b e s t C l a s s = p r e d i c t ( bags [ q Id ] , t f I d f s )
15 i f b e s t C l a s s has c o r r e c t l a b e l then c o r r e c t++
16 i f c o r r e c t > bes tCor // keep b e s t
17 ( bestCor , bestL , bestW , b e s t T f I d f s ) = ( c o r r e c t , l , w, t f I d f s )
18 r e t u r n ( bestCor , bestL , bestW , b e s t T f I d f s ) // b e s t p a r a m e t e r s

Cosine Similarity: Each BOSS histogram contains at most n − w + 1 SFA words.
A histogram lookup for an SFA word has a constant time complexity by the use
of hashing. This results in a total complexity that is linear in n:

T (BOSSV SDistance) = O(n− w + 1) = O(n) (9)

Due to duplicates and numerosity reduction the actual number of unique SFA
words is typically much smaller than n .

4 Time Series Classification

Classification describes the task of assigning a label to an unlabeled time series Q
using a trained model from labeled samples. It requires the tf-idf weight matrix
to be computed for each class (i.e., Cylinder, Bell and Funnel) based on a train
dataset (Algorithm 2). An unlabeled time series Q is assigned to the class C that
maximizes the Cosine similarity (Algorithm 3):

label(Q) = argmax
CεCLASSES

(DBOSSV S(Q,C))

4.1 The BOSS VS Classifier Algorithm

Prediction (Algorithm 2): The algorithm is based on 1-Nearest-Neighbor (1-NN)
classification using the tf-idf weight matrix. The use of classes instead of the time
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series significantly reduces the computational complexity for classification. First,
all classes (line 3) are iterated and the dot product between the tf vector of the
query and the tf-idf weight matrix for each class is calculated (line 4). The class
that maximizes the Cosine similarity is chosen as the query’s class label (lines 5–6).

Fit (Algorithm 3): We use grid search in combination with cross-validation to
estimate the parameters for mean, w, and l. The SFA alphabet size is fixed to
c = 4, which is sufficient for a high classification accuracy on most datasets [12].
The mean normalization is a boolean parameter. If set to true, the first Fourier
coefficient (DC coefficient) is dropped to obtain offset invariance. At the end of
the training phase, we obtain tf-idf vectors for each class of the train dataset. This
tf-idf matrix is the compressed representation of the train dataset and used as the
model for classification.

Algorithm 3 iterates all
√
n window lengths (line 5) and obtains the BOSS

model for each window length (lines 7–8). Next, the tf-idf weight matrix is com-
puted for each class based on the BOSS models of each time series and a concrete
SFA word length (lines 10–11). By removing symbols from an SFA word, we can
avoid recomputing the Fourier transform for smaller word lengths. Leave-one-out
cross-validation is performed for each sample to predict the best class (lines 13–15).
Finally, the best configuration is returned (line 18).

We choose the SFA word lengths from {4, 6, 8, 10, 12, 14, 16}, in total seven
values. Mean normalization can be set to true or false. Searching for the optimal
window length can be computationally expensive, as there are at most n windows
for time series length n. To significantly reduce training times, we decided to train
using only the

√
n windows at equivalent distance in the interval [10, n]. As the

BOSS model is robust regarding the choice of window lengths [12], this has no
significant effect on the accuracy. In total the BOSS VS parameter space has the
size: 2 · 7 ·

√
n = O(

√
n). The BOSS model has a parameter space of size O(n),

leading to higher train times. We will analyze the effects of these design decisions
in Section 5.3.

4.2 Computational Complexity

Predict (Algorithm 2): The computational complexity for the classification is given
by a 1-NN search over the |CLASSES| classes using the Cosine similarity:

T (BOSS VS Predict) = O(|CLASSES| · T (BOSSV SDistance))

= O(|CLASSES| · n) = O(n) (10)

The computational complexity is constant in the number of samples N .

Fit (Algorithm 3) The computational complexity of the train phase results from (a)
building N histograms, one for each of N time series, and (b) building |CLASSES|
tf-idf vectors, one for each class C. This is done for

√
n window lengths:

T (BOSS VS Fit) = O(
√
n ·N · [T (BOSS) + T (BOSS VS Predict)])

= O(Nn
3
2 |CLASSES|) = O(Nn

3
2 )

Note that this computational complexity is even lower than the test complexity
of the 1-NN DTW classifier with O(Nn2) (Table 1).
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45 UCR datasets [13]:
50words, Adiac, Beef, CBF, ChlorineConcentration, CinC ECG torso, Coffee, Cricket X, Cricket Y,
Cricket Z, DiatomSizeReduction, ECG200, ECGFiveDays, FaceAll, FaceFour, FacesUCR, Fish,
Gun-Point, Haptics, InlineSkate, ItalyPowerDemand, Lighting2, Lighting7, MALLAT,
MedicalImages, Motes, NonInvasiveFatalECG Thorax1, NonInvasiveFatalECG Thorax2, OliveOil,
OSULeaf SonyAIBORobotSurface, SonyAIBORobotSurfaceII, StarlightCurves, SwedishLeaf,
Symbols, synthetic control, Trace, Two Patterns, TwoLeadECG, uWaveGestureLibrary X,
uWaveGestureLibrary Y, uWaveGestureLibrary Z, wafer, WordsSynonyms, yoga

46 Datasets from [25,26,14,16,5,6,20,13]:
ArrowHead, ARSim, BeetleFly, BirdChicken, Computers, DistalPhalanxOutlineAgeGroup,
DistalPhalanxOutlineCorrect, DistalPhalanxTW, Earthquakes, ECG5000, ElectricDevices, FordA,
FordB, Ham, HandOutlines, heartbeat (BIDMC), Herring, InsectWingbeatSound,
LargeKitchenAppliances, Meat, MiddlePhalanxOutlineAgeGroup, MiddlePhalanxOutlineCorrect,
MiddlePhalanxTW, Otoliths, Passgraph, PhalangesOutlinesCorrect, Phoneme,
ProximalPhalanxOutlineAgeGroup, ProximalPhalanxOutlineCorrect, ProximalPhalanxTW,
RefrigerationDevices, ScreenType, ShapeletSim, ShapesAll, shield, SmallKitchenAppliances, stig,
Strawberry, ToeSegmentation1, ToeSegmentation2, UWaveGestureLibraryAll, wheat, Wine,
WordSynonyms, Worms, WormsTwoClass

Table 2 The 91 public time series datasets used in the experiments.

5 Experiments

We evaluated the BOSS VS model using two case studies for long time series
and 91 public time series benchmark datasets (Table 2). Our web page contains
all raw numbers and the C++ source codes [27]. The BOSS VS classifier was
implemented in C++ using OpenMP and JAVA. All experiments were performed
using the JAVA implementation on a shared memory machine running LINUX
with 8 Quad Core AMD Opteron 8358 SE processors, and JAVA JDK x64 1.8. For
all experiments the time series datasets were z-normalized prior to the experiments.
All experiments consist of two phases: model building using the train dataset and
testing the classification accuracy using the test dataset.

The 1-NN BOSS VS classifier is compared to state-of-the-art classifiers in-
cluding nearest-neighbor based classifiers like 1-NN Fast Shapelets [6], Learn-
ing Shapelets (LS) [7], time series bag-of-features (TSBF) [21], 1-NN bag-of-
patterns [16], 1-NN Shotgun [9], 1-NN ED or 1-NN DTW with the optimal warping
window constraint [4], SAX-VSM [20], 1-NN BOSS classifier [12], ensemble tech-
niques Elastic Ensemble (PROP) [10] and COTE [11], support vector machines
(SVM) with a quadratic and cubic kernel, Naive Bayes classifier, and a tree based
ensemble method (random forest). Where possible we used the implementations
given by the authors, or python using the sklearn-framework for the SVM, Naive
Bayes, and random forest benchmarks.

5.1 Case Studies for Long Time Series

We present two case studies for long time series that underline the high accuracy
combined with the fast classification times offered by our BOSS VS model. These
two datasets are two of the largest public datasets available.



Scalable Time Series Classification 15

10-1
100
101
102
103
104

S
p

e
e
d

u
p Over DTW Over BOSS

1-NN Shotgun

1-NN DTW

1-NN BOSS

1-NN DTW Centroid (16)

SAX VSM

1-NN DTW CV

1-NN Fast Shapelets

SVM
1-NN Euclidean

1-NN BOSS VS

80.0%
85.0%
90.0%
95.0%

100.0%

A
cc

u
ra

cy

9
0
.7

%

9
0
.7

%

9
7
.9

%

8
9
.2

%

8
9
.2

%

9
0
.5

%

9
4
.4

%

9
4
.1

%

8
4
.9

%

9
0
.4

%

StarLightCurves, N=1000, n=1024

Fig. 7 Speedup and classification accuracy for starlight curves using 32 cores.

5.1.1 Starlight Curves

The StartLightCurves dataset [13] contains N = 1000 train and N = 8236 test
samples each of length 1024. Figure 7 illustrates (from top to bottom):

1. The speedup of each classifier over 1-NN DTW (dotted line) and 1-NN BOSS
(straight line),

2. The classification accuracy.

Training the classifiers takes from seconds (BOSS VS) up to several days (SAX-
VSM, DTW centroid) using 32 cores. We have added a video to our website to
illustrate differences in test times [27].

The 1-NN DTW, using the state-of-the-art implementation [4], takes 7 minutes
on our 32 core machine for prediction. 1-NN DTW CV uses a warping window
constraint set through cross validation and is two orders of magnitude slower than
the 1-NN BOSS VS in prediction time with 0.4 seconds, and it takes roughly
one hour to train using all cores. The 1-NN BOSS classifier takes three minutes
for prediction, six minutes for training, and has the best accuracy of 97.9%, due
to its invariances to noise, phase shifts, offsets, amplitudes and occlusions. The
Euclidean distance based classifier is fast but the least accurate. Our 1-NN BOSS
VS classifier has a competitive classification accuracy and takes only 0.4 seconds
for prediction which is three orders of magnitude faster than 1-NN DTW, and 2.5
orders of magnitude faster than the 1-NN BOSS classifier.

This dataset underlines the utility of the 1-NN BOSS VS for long time series.

5.1.2 Personalized Medicine: Heartbeat BIDMC

The BIDMC Congestive Heart Failure Database1 contains ECG recordings of 15
subjects, who suffer from severe congestive heart failures. The recordings contain
noisy or extraneous data, when the recordings started before the machine was
connected to the patient. ECG signals show a high level of redundancy due to

1 http://www.physionet.org/physiobank/database/chfdb/ (2015)
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Fig. 8 Speedup and classification accuracy for ECG recordings using 32 cores. SVM was not
benchmarked due to the different length of the train and test set. Fast Shapelets timed out
after 6 days of training.

repetitive heartbeats but even a single patient can have multiple different heart-
beats. The train/test split [28] contains N = 600 train and N = 600 test samples.
The train and test splits have different lengths of n = 3750 and n = 11250.

Figure 8 shows that the 1-NN BOSS, the 1-NN BOSS VS and the 1-NN Shotgun
classifiers offer the best classification accuracy. The other classifiers have a much
lower classification accuracy. This is not surprising as the data is noisy and requires
invariance to phase shifts in order to cope with the periodic ECG patterns. Train
times vary from minutes (BOSS, BOSS VS) to days (SAX-VSM, Shotgun classifier,
and DTW centroid) using 32 cores. 1-NN DTW has the highest test time with 30
minutes. Our 1-NN BOSS VS classifier offers a close to perfect accuracy with
99.8%, has a test time of 2s and a train time of 150s. The test time is three orders
of magnitude lower than that of 1-NN DTW and two orders of magnitude lower
than the 1-NN BOSS classifier. Even when combining the test and train times,
the 1-NN BOSS VS is one order of magnitude faster than the 1700s 1-NN DTW
classifier’s test time.

This dataset underlines that common distance measures degenerate for long
time series of with thousands of values. Our BOSS VS scores a close to perfect
accuracy.

5.2 Classification Accuracy

All classifiers were evaluated using the same 91 public time series datasets (see
Table 2):

– 84 datasets taken from the UCR time series classification archive [13].
– 7 datasets taken from other publications [25,26,14,16,5,6,20].

Each dataset provides a train/test split. There might be a confusion with the
terms “training”, “validation”, and “test” sets used in supervised learning. The
train split is used as the training and validation set. The test split is used as the
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Fig. 9 Critical difference diagram for state-of-the-art classifiers on the 91 datasets. The best
classifiers are to the right. Critical difference is 2.9. Ensemble classifiers like Elastic Ensemble
(PROP) [10] or COTE [11] make use of dozens of classifiers to produce a label.

test set. By the use of these train/test splits, the results are comparable to previous
publications. All our results are based on the test accuracy of the classifiers using
the test split. We used the fixed length versions of each dataset, except for stig

and shield.

Classification Accuracy

Figure 9 shows a critical difference diagram over the average ranks of the classifiers
as introduced in [29]. The classifiers with the lowest (best) ranks are to the right.
The group of classifiers that are not significantly different in their rankings are
connected by a bar. The critical difference (CD) length is shown above the graph.

– The 1-NN BOSS classifier is in the group of the most accurate time series
classifiers. This confirms our claims that structural similarity (bag of words) in
combination with noise reduction (SFA) is important for time series similarity.

– The strength of the 1-NN BOSS VS classifier lies in its computational com-
plexity rather than its high classification accuracy. It is in the group of the
best classifiers: COTE (Ensemble), 1-NN BOSS, Learning Shapelets (LS), or
Elastic Ensemble (PROP).

– The 1-NN DTW and 1-NN DTW CV classifiers are commonly used as bench-
marks to compare to [14,8,10]. Both perform worse than our 1-NN BOSS VS.

– Most other classifiers perform significantly worse than 1-NN BOSS VS, includ-
ing Euclidean distance based classifiers, Naive Bayes, the SAX-VSM classifier
that builds on SAX and the vector space model, or Shapelet classifiers.

– The Elastic Ensemble (PROP) [10] is an ensemble of 11 distinct time series
classifiers. The COTE [10] ensemble is based on 35 distinct time series classi-
fiers. Their excellent accuracy comes at the cost of an enormous classification
time, as they have to predict a label for each distinct classifier first.



18 Patrick Schäfer
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Fig. 10 Critical difference diagram for BOSS VS vs 1-NN DTW (left) and 1-NN DTW CV
(right) on the 91 datasets. Critical distance is 0.17 for both.

Implications: The 1-NN BOSS is among the most accurate classifiers. The 1-NN
BOSS VS classifier is extremely fast and provides better accuracy than the bench-
mark 1-NN DTW classifier. Ensemble classifiers like Elastic Ensemble (PROP) [10]
or COTE [11] use large numbers of classifiers, and give high accuracy at the cost
of an enormous computational complexity.

Is 1-NN BOSS VS significantly more accurate than 1-NN DTW with a full warping

window?

The 1-NN DTW classifier is commonly used as the benchmark to compare to [8,
25,14]. Thus, we test if the 1-NN BOSS VS classifier performs significantly better
than the 1-NN DTW or 1-NN DTW CV classifiers on the 91 time series datasets
(Figure 10).

Critical difference diagram: Figure 10 shows the critical difference diagrams. The
critical difference is 0.17 in both cases. The 1-NN BOSS VS is significantly more
accurate than 1-NN DTW with a difference in ranks of 1.69 − 1.31 > 0.17 and
1.61− 1.39 > 0.17 and:

– 1-NN BOSS VS has 62 wins, 3 draw, and 26 losses over 1-NN DTW with a full
warping window.

– 1-NN BOSS VS has 54 wins, 4 draw, 33 losses over 1-NN DTW CV (see the
excel sheet with detailed results [27]).

Wilcoxon signed rank test: To validate the results, we performed a Wilcoxon signed
rank test to check if 1-NN BOSS VS is significantly different from 1-NN DTW
and 1-NN DTW CV. With a p-value of 0.025 for 1-NN DTW VS and 0.000086
for 1-NN DTW we can reject the null-hypothesis that any of the two 1-NN DTW
classifiers is from the same distribution.

Implications: The 1-NN BOSS VS classifier is significantly more accurate than
1-NN DTW and 1-NN DTW CV, and orders of magnitude faster.
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Fig. 11 Difference in accuracy on 91 time series datasets using 1-NN DTW as baseline.
Datasets are ordered by increasing time series lengths as in Figure 7.

Classification Accuracy for Long Time Series

The 1-NN BOSS VS classifier is optimized for classification speed. Its utility would
be limited, if it only scored well for small datasets but degenerates for long or
large time series datasets. This is not the case. Figure 11 shows the differences in
classification accuracy using the 1-NN DTW classifier as the baseline.

– For comparison, we plot the Naive Bayes classifier, which is a very fast classifier.
Its accuracy is worse than that of the 1-NN DTW for most datasets and it is
not applicable to variable length datasets such as shield and stig. The accuracy
drops by up to 50% (Two Patterns) compared to 1-NN DTW, or 70% compared
to 1-NN BOSS (heartbeat BIDMC).

– The 1-NN BOSS classifier shows the highest accuracy and is better than 1-NN
DTW for most datasets independent of the length of the time series.

– The 1-NN BOSS VS classifier performs better than 1-NN DTW for most of
the long time series datasets to the right of the plot. The accuracy drops by
just a few percentage points for most datasets compared to 1-NN BOSS.

Implications: The 1-NN BOSS VS classifier is optimized for classification times but
also provides a high accuracy for long time series datasets. The accuracy drops by
just a few percentage points for most datasets and it is orders of magnitude faster.

Pairwise comparison of wall-clock times

Figure 12 shows the wall-clock times of the four state-of-the-art classifiers in a
pairwise comparison to our 1-NN BOSS VS classifier. We omit the PROP or
COTE classifiers, as these cannot be faster than the 1-NN DTW or 1-NN DTW CV
classifiers, that both use. Again our BOSS VS classifier significantly outperforms
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Fig. 12 Pairwise comparison of wall-clock times of the four most accurate classification algo-
rithms compared to 1-NN BOSS VS.

the other classifiers by up to five orders of magnitude in terms of classification
times.

– The 1-NN BOSS VS classifier is significantly faster than the 1-NN BOSS clas-
sifier in terms of train and test times.

– It seems to have similar train times to the 1-NN Shotgun classifier. When
looking at the raw data, the 1-NN Shotgun classifier trains faster for very
small datasets and is orders of magnitude slower for moderate to large sized
datasets.

– 1-NN DTW CV requires a training phase to find the warping window con-
straint, resulting in reduced test times when compared to 1-NN DTW. When
looking at the raw data, the 1-NN DTW CV classifier has similar test times
for the small datasets and is orders of magnitude slower than 1-NN BOSS
VS for moderate to large sized datasets (compare total time to completion in
Figure 12).
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Fig. 13 Critical difference diagram for the design decisions made using the 45 UCR datasets.
The best classifiers are to the right. Critical difference (CD) is 1.22.

– 1-NN DTW is one to four orders of magnitude slower in terms of test times
than our 1-NN BOSS VS, and is never significantly faster.

Implications: The 1-NN BOSS VS is among the most accurate classifiers. It is (a)
multiple orders of magnitude faster than the 1-NN BOSS classifier, 1-NN DTW, 1-
NN Shotgun classifier, and state of the art, and (b) it is significantly more accurate
than 1-NN DTW with or without a warping window constraint.

5.3 Impact of Design Decisions

We use all 45 UCR datasets [13] to test the impact of the design decisions of the
BOSS VS model:

1. Testing a subset of
√
n windows for training as opposed to using all windows

(BOSS VS + all windows).
2. Mean normalization as a parameter as opposed to always applying z-normalization

(BOSS VS + z-norm) to all windows.

BOSS VS was designed to use a subset of windows and mean normalization as a
parameter. Figure 13 shows that the mean normalization as a parameter performs
significantly better than always norming the data (“+z-norm”). The use of

√
n

windows performs worse than the use of all windows (“+all windows”).

Implications: The BOSS VS model is (a) based on the use of a subset of windows
for training and (b) mean normalization as a parameter. While the mean parameter
improves the accuracy, the use of a subset of windows reduces accuracy. However,
it is crucial for a low train time which is reduced to O(Nn

3
2 ).

5.4 When would we recommend using our BOSS VS model over our BOSS
model?

BOSS VS equals and outperforms previous methods on 12 datasets: BeetleFly, Dis-

talPhalanxOutlineAgeGroup, ECGFiveDays, ShapeletSim, shield, Strawberry, Symbols,
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Fig. 14 Pairwise comparison of BOSS VS and state of the art on all 91 datasets.

ToeSegmentation1, Trace, TwoLeadECG, and wafer. It is state of the art for these
datasets. For all datasets it is orders of magnitude faster than state of the art. It
is well suited for repetitive (ECG/EEG signals, human motions), long time series
or outline/shape-based datasets.

For the remaining datasets there is a trade-off between accuracy, energy con-
sumption and processor time of a classifier. If processor time and energy con-
sumption are not an issue, the best classifiers to date are the 1-NN BOSS clas-
sifier [12], Learning Shapelet (LS) [7], or the two ensemble techniques Elastic
Ensemble (PROP) [10] and COTE [11]. The 1-NN BOSS classifier offers a very
high accuracy for long or noisy time series datasets, as it compares two time se-
ries based on a structural level. It has a high computational complexity for large
time series datasets. The 1-NN BOSS VS classifier has a low computational com-
plexity with a sightly decreased accuracy. Figure 14 shows a pairwise comparison
of classification accuracies. Each point represents the accuracy on one dataset. A
point below the straight blue line indicates that BOSS VS is more accurate. The
difference to the BOSS classifier (left) in accuracy is negligibly small with −10 to
10 percentage points for most datasets. Its accuracy drops by up to 20 percentage
points when compared to the COTE ensemble, which ensembles 35 classifiers and
as such is very slow. Meanwhile the BOSS VS is up to 40 percentage points better
than 1-NN DTW (center) or 1-NN DTW CV classifiers (right).
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Implications: The 1-NN BOSS VS advances state of the art on 12 datasets. It is an
ideal choice for mining repetitive, long or large amounts of time series, where it is
orders of magnitude faster than state of the art with a sightly decreased accuracy.
In some real-time data analytics or embedded computing use cases it is the best
viable solution to date.

6 Conclusion

In the context of mining large datasets and real-time analytics there is a need for
time series classification algorithms with (a) a low test time to allow for mining
large datasets, (b) tolerance to noise to provide high classification accuracy and (c)
a moderate train time to allow for frequent model updates. This work introduces
BOSS in Vector Space (BOSS VS) that is multiple orders of magnitude faster than
state-of-the-art classifiers and has a high classification accuracy due to invariances
to noise, phase shifts, offsets, amplitudes and occlusions. An exhaustive evaluation
using 91 public time series benchmark datasets shows that it is (a) significantly
more accurate than 1-NN DTW with or without a warping window, and (b) com-
petitive to state-of-the-art classifiers with regards to classification accuracy while
being orders of magnitude faster in terms of classification times.
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