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ABSTRACT
Time series (TS) occur in many scientific and commercial applica-
tions, ranging from earth surveillance to industry automation to the
smart grids. An important type of TS analysis is classification, which
can, for instance, improve energy load forecasting in smart grids by
detecting the types of electronic devices based on their energy con-
sumption profiles recorded by automatic sensors. Such sensor-driven
applications are very often characterized by (a) very long TS and
(b) very large TS datasets needing classification. However, current
methods to time series classification (TSC) cannot cope with such
data volumes at acceptable accuracy; they are either scalable but
offer only inferior classification quality, or they achieve state-of-the-
art classification quality but cannot scale to large data volumes. In
this paper, we present WEASEL (Word ExtrAction for time SEries
cLassification), a novel TSC method which is both fast and accurate.
Like other state-of-the-art TSC methods, WEASEL transforms time
series into feature vectors, using a sliding-window approach, which
are then analyzed through a machine learning classifier. The novelty
of WEASEL lies in its specific method for deriving features, result-
ing in a much smaller yet much more discriminative feature set. On
the popular UCR benchmark of 85 TS datasets, WEASEL is more
accurate than the best current non-ensemble algorithms at orders-of-
magnitude lower classification and training times, and it is almost as
accurate as ensemble classifiers, whose computational complexity
makes them inapplicable even for mid-size datasets. The outstanding
robustness of WEASEL is also confirmed by experiments on two
real smart grid datasets, where it out-of-the-box achieves almost the
same accuracy as highly tuned, domain-specific methods.
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1 INTRODUCTION
A time series (TS) is a collection of values sequentially ordered in
time. TS emerge in many scientific and commercial applications, like
weather observations, wind energy forecasting, industry automation,
mobility tracking, etc. One driving force behind their rising impor-
tance is the sharply increasing use of sensors for automatic and high
resolution monitoring in domains like smart homes [17], starlight
observations [30], machine surveillance [27], or smart grids [15, 39].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’17, November 6–10, 2017, Singapore.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4918-5/17/11. . . $15.00
DOI: https://doi.org/10.1145/3132847.3132980

Figure 1: Daily power consumption of seven appliances with
two samples per class. Bottom to top: dishwasher, microwave
oven, digital receiver, coffee-maker, amplifier, lamp, monitor.

Research in TS is diverse and covers topics like storage, compres-
sion, clustering, etc.; see [10] for a survey. In this work, we study
the problem of time series classification (TSC): Given a concrete
TS, the task is to determine to which of a set of predefined classes
this TS belongs to, the classes typically being characterized by a set
of training examples. Research in TSC has a long tradition [2, 10],
yet progress was focused on improving classification accuracy and
mostly neglected scalability, i.e., the applicability in areas with very
many and/or very long TS. However, many of today’s sensor-driven
applications have to deal with exactly these data, which makes meth-
ods futile that do not scale, irrespective of their quality on small
datasets. Instead, TSC methods are required that are both very fast
and very accurate.

As a concrete example, consider the problem of classifying energy
consumption profiles of home devices (a dish washer, a washing
machine, a toaster etc.). In smart grids, every device produces a
unique profile as it consumes energy over time; profiles are unequal
between different types of devices, but rather similar for devices
of the same type (see Figure 1). The resulting TSC problem is as
follows: Given an energy consumption profile (which is a TS), de-
termine the device type based on a set of exemplary profiles per
type. For an energy company such information helps to improve
the prediction of future energy consumption [12, 13]. For approach-
ing these kinds of problems, algorithms that are very fast and very
accurate are required. Regarding scalability, consider millions of
customers each having dozens of devices, each recording one mea-
surement per second. To improve forecasting, several millions of
classifications of time series have to be performed every hour, each



considering thousands of measurements. Even with TS sampling
or adaptive re-classification intervals the number of classifications
remains overwhelming and can only be approached with very fast
TSC methods. Regarding accuracy, it should be considered that any
improvement in prediction accuracy may directly transform into sub-
stantial monetary savings. For instance, [15, 39] report that a small
improvement in accuracy (below 10%) can save tens of millions of
dollars per year and company. However, achieving high accuracy
classification of home device energy profiles is non trivial due to
different usage rhythms (e.g., where in a dishwasher cycle has the
TS been recorded?), differences in the profiles between concrete
devices of the same type, and noise within the measurements, for
instance because of the usage of cheap sensors.

Current TSC methods are not able to deal with such data at suffi-
cient accuracy and speed. Several high accuracy classifiers, such as
Shapelet Transform (ST) [6], have bi-quadratic complexity (power
of 4) in the length of the TS; even methods with quadratic classi-
fication complexity can be infeasible. The current most accurate
method (COTE [3]) even is an ensemble of dozens of core classifiers
many of which have a quadratic, cubic or bi-quadratic complexity.
On the other hand, fast TSC methods, such as BOSS VS [35] or
Fast Shapelets [33], perform much worse in terms of accuracy com-
pared to the state of the art [2]. As a concrete example, consider the
(actually rather small) PLAID benchmark dataset [12], consisting
of 1074 profiles of variable-length (102 to 103) measurements each
stemming from 11 different devices. Figure 2 plots classification
times in log scale (including all preprocessing steps) versus accu-
racy for nine state-of-the-art TSC methods and the novel algorithm
presented in this paper, WEASEL. Euclidean distance (ED) based
methods are the fastest, but their accuracy is far below standard.
Dynamic Time Warping methods (DTW, DTW CV) are common
baselines and show a moderate runtime of 10 to 100 ms but also low
accuracy. Highly accurate classifiers such as ST [6] and BOSS [36]
require orders-of-magnitude longer prediction times. For this rather
small dataset, the COTE ensemble classifier has not yet terminated
training after 12 CPU weeks, thus we cannot report the accuracy, yet.
In summary, the fastest methods for this dataset require around 1ms
per prediction, but have an accuracy below 80%; the most accurate
methods achieve 85%-88% accuracy, but require 80ms up to 32sec
for prediction.

In this paper, we propose a new TSC method called WEASEL:
Word ExtrAction for time SEries cLassification. WEASEL is both
fast and very accurate; for instance, on the dataset shown in Figure 2
it achieves the highest accuracy while being the third-fastest algo-
rithm (requiring only 4ms per prediction). Like several other meth-
ods, WEASEL conceptually builds on the bag-of-patterns (BOP)
approach: It moves a sliding window over a TS and extracts discrete
features per window which are subsequently fed into a machine
learning classifier. However, the way of constructing and filtering
features in WEASEL is completely different from previous methods:

(1) Discriminative feature generation: WEASEL derives dis-
criminative features based on the dataset labels. Specifi-
cally, our novel supervised symbolic representation deter-
mines the most discriminative Fourier coefficients using
an ANOVA f-test and finally applies information gain bin-
ning for choosing appropriate discretization boundaries.
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Figure 2: Classification accuracy and single prediction runtime
(log scale) for different TSC methods on the energy consump-
tion dataset PLAID. Prediction times include all preprocessing
steps (feature extraction, etc.). Methods are explained in Sec-
tion 2, the system used is described in Section 5.

This differs from previous approaches, like SFA [37] or
SAX [20], which rely on fixed, data-independent intervals,
possibly leading to features equally frequent across classes.

(2) Co-occurring words & variable-length windows:
WEASEL extracts windows at multiple lengths and
also considers the order of windows (using bi-grams as
features) instead of considering each fixed-length window
as independent feature. It then builds a single model from
the concatenation of feature vectors. So, instead of training
O(n) different models, and picking the best one, we weigh
each feature based on its relevance to predict the class.

(3) Feature selection: The wide range of features (bigrams,
unigrams and window lengths) considered introduces many
irrelevant features. Therefore, WEASEL first applies an
aggressive statistical feature selection to remove irrelevant
features from each class, without negatively impacting ac-
curacy and heavily reducing runtime. The resulting feature
set is highly discriminative, which allows us to use fast lo-
gistic regression instead of more elaborated, but also more
runtime-intensive methods.

(4) Evaluation: We performed a series of experiments on a
total of 85 TS datasets and two use cases to assess the
impact of these improvements. WEASEL outperforms the
best state-of-the-art core-classifiers in terms of accuracy
while also being one of the fastest methods; it is almost
as accurate as the current overall best ensemble classifier
(COTE) but multiple orders-of-magnitude faster in training
and in classification times.

The rest of this paper is organized as follows: In Section 2 we
present related work. Section 3 briefly recaps bag-of-patterns classi-
fiers and feature discretization using Fourier transform. In Section 4
we present WEASEL’s novel way of feature generation and selection.
Section 5 presents evaluation results.



2 RELATED WORK
With time series classification (TSC) we denote the problem of
assigning a given TS to one of a predefined set of classes. The
techniques used for TSC can be broadly categorized into two classes:
whole series-based methods and feature-based methods [21]. Whole
series similarity measures make use of a point-wise comparison
of entire TS. These include 1-NN Euclidean Distance (ED) or 1-
NN Dynamic Time Warping (DTW) [32], which is commonly used
as a baseline in comparisons [2, 22]. Typically, these techniques
work well for short but fail for noisy or long TS [36]. Furthermore,
DTW has a computational complexity of O(n2) for TS of length n.
Techniques like early pruning of candidate TS with cascading lower
bounds [32], or clustering and indexing [8, 28] have been applied to
reduce the effective runtime.

In contrast, feature-based classifiers rely on comparing features
generated from substructures of TS. The most successful approaches
can be grouped as either using shapelets or bag-of-patterns (BOP).
Shapelets are defined as TS subsequences that are maximally repre-
sentative of a class. In [26] a decision tree is built on the distance to
a set of shapelets. The Shapelet Transform (ST) [6, 23], which is the
most accurate shapelet approach according to a recent evaluation [2],
uses the distance to the shapelets as input features for an ensemble
of different classification methods. In the Learning Shapelets (LS)
approach [14], optimal shapelets are synthetically generated. The
drawback of shapelet methods is the high computational complexity
resulting in rather long training and classification times. In [18]
a forest of shapelet-based decision trees is built using a random
subset of shapelets for each decision tree. After 300 CPU days of
training and correspondence with the authors, we had to omit this
classifier for the evaluation, as we were unable to exactly reproduce
the reported results.

The alternative approach within the class of feature-based classi-
fiers is the bag-of-patterns (BOP) model [21]. Such methods break
up a TS into a bag of substructures, represent these substructures as
discrete features, and finally build a histogram of feature counts as
basis for classification. The first published BOP model (which we
abbreviate as BOP-SAX) uses sliding windows of fixed lengths and
transforms these measurements in each window into discrete features
using Symbolic Aggregate approXimation (SAX) [20]. Classifica-
tion is implemented as 1-NN classifier using ED of feature counts
as distance measure. SAX-VSM [38] extends BOP-SAX with tf-idf
weighing of features and uses the Cosine distance; furthermore, it
builds only one feature vector per class instead of one vector per
sample, which drastically reduces runtime. Another current BOP al-
gorithm is the TS bag-of-features framework (TSBF) [4], which first
extracts windows at random positions with random lengths and next
builds a supervised codebook generated from a random forest classi-
fier. The BOP-based algorithm BOSS (Bag-of-SFA-Symbols) [36]
uses the Symbolic Fourier Approximation (SFA) [37] instead of
SAX, and is currently the most accurate BOP-based method. In
contrast to shapelet-based approaches, BOP-based methods typically
have only linear complexity for prediction.

The most accurate current TSC algorithms are ensembles. These
classify a TSC by a set of different core classifiers and then aggre-
gate the results using techniques like bagging or majority voting.
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(3) Bag-of-Patterns model

Figure 3: Transformation of a TS into the Bag-of-Patterns
(BOP) model using overlapping windows (second to top), dis-
cretization of windows to words (second from bottom), and
word counts (bottom).

The Elastic Ensemble (EE PROP) classifier [22] uses 11 whole se-
ries classifiers. The COTE ensemble [3] is based on 35 core-TSC
methods including EE PROP and ST. Very recently, there has been
an extension HIVE-COTE to COTE [24] that incorporates classi-
fiers from five domains and claims superior accuracy. WEASEL
should be seen as a possible replacement of BOSS in HIVE-COTE.
If designed properly, ensembles combine the advantages of their
core classifiers, which often lead to superior results. However, the
price to pay is excessive runtime requirement for training and for
classification, as each core classifier is used independently of all
others.

In [41] deep learning networks are applied to TSC. Their best
performing full convolutional network (FCN) out-of the-box per-
forms not significantly different from state of the art, without any
pre-preprocessing or feature crafting. In [41] multi-scale convolu-
tional neural networks (MCNN) are presented for TSC. The MCNN
extracts features at different scales and frequencies, similar to the
windowing approach in BOP. In their experimental evaluation their
MCNN is not significantly different from COTE and BOSS. Ex-
periments in both papers are based on only 44 out of the 85 UCR
datasets tested here. Thus, we can not directly compare these results
to the ones in our experiments. Furthermore, both implementations
need a GPU, as opposed to the CPU based time measurements we
did here. Thus, we have to omit these two papers in our evaluation.

3 TIME SERIES, BOP, AND SFA
In this work, a time series (TS) T is a sequence of n ∈ N real
values, T = (t1, . . . , tn ), ti ∈ R. As we primarily address TS
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Figure 4: The Symbolic Fourier Approximation (SFA): A time
series (left) is approximated using the truncated Fourier trans-
form (center) and discretized to the word ABDDABBB (right)
with the four-letter alphabet (’a’ to ’d’). The inverse transform
is depicted by an orange area (right), representing the tolerance
for all signals that will be mapped to the same word.

generated from automatic sensors with a fixed sampling rate, we
ignore time stamps. Given a TS T , a window S of length w is a
subsequence with w contiguous values starting at offset a in T , i.e.,
S(a,w) = (ta , . . . , ta+w−1) with 1 ≤ a ≤ n − w + 1. We associate
each TS with a class label y ∈ Y from a predefined set Y . Time
series classification (TSC) is the task of predicting a class label for
a TS whose label is unknown. A TS classifier is a function that is
learned from a set of labeled time series (the training data), takes an
unlabeled time series as input and outputs a label.

Algorithms following the BOP model build this classification
function by (1) extracting windows from a TS, (2) transforming
each window of real values into a discrete-valued word (a sequence
of symbols over a fixed alphabet), (3) building a feature vector
from word counts, and (4) finally using a classification method from
the machine learning repertoire on these feature vectors. Figure 3
illustrates these steps from a raw time series to a BOP model using
overlapping windows.

BOP methods differ in the concrete way of transforming a window
of real-valued measurements into discrete words (discretization). For
example, the basis of the BOSS model is a symbolic representation
called SFA, which generates features independent of the actual class
labels. In [37] SFA works as follows: (1) Values in each window
are normalized to have standard deviation of 1 to obtain amplitude
invariance. (2) Each normalized window of length w is subjected to
dimensionality reduction by the use of the truncated Fourier trans-
form, keeping only the first l < w coefficients for further analysis.
This step acts as a low pass filter, as higher order Fourier coefficients
typically represent rapid changes like dropouts or noise. (3) Each
coefficient is discretized to a symbol of an alphabet of fixed size c to
achieve further robustness against noise. Figure 4 exemplifies this
process. Each of these steps ignores class labels.

4 WEASEL
In this section, we present our novel TSC method WEASEL (Word
ExtrAction for time SEries cLassification). WEASEL specifically
addresses the major challenges any TSC method has to cope with

Figure 5: WEASEL Pipeline: Feature extraction using our
novel supervised symbolic representation, and our novel bag-
of-patterns model.

when being applied to data from sensor readouts, which can be sum-
marized as follows (using home device classification as an example):

(1) Invariance to noise: TS can be distorted by (ambiance)
noise as part of the recording process. In a smart grid, such
distortions are created by imprecise sensors, information
loss during transmission, stochastic differences in energy
consumption, or interference of different consumers con-
nected to the same power line.

(2) Scalability: TS in sensor-based applications are typically
recorded with high sampling rates, leading to long TS. Fur-
thermore, smart grid applications typically have to deal
with thousands or millions of TS.

(3) Variable lengths and offsets: TS to be classified may have
variable lengths, and recordings of to-be-classified intervals
can start at any given point in time. In a smart grid, sensors
produce continuous measurements, and the partitioning of
this essentially infinite stream into classification intervals
is independent from the usages of devices. Thus, character-
istic patterns may appear anywhere in a TS (or not at all),
but typically in the same order.

(4) Unknown characteristic substructures: Feature-based clas-
sifiers exploit local substructures within a TS, and thus
depend on the identification of recurring, characteristic pat-
terns. However, the position, form, and frequency of these
patterns is unknown; many substructures may be irrele-
vant for classification. For instance, the idle periods of the
devices in Figure 1 are essentially identical.

We carefully engineered WEASEL to address these challenges.
Our method conceptually builds on the BOP model in BOSS [36],
yet uses rather different approaches in many of the individual steps.
We will use the terms feature and word interchangeably throughout
the text.

The main contribution of WEASEL is not the approach itself,
but the several pieces that compose the solution related to feature
crafting. WEASEL is composed of the building blocks depicted in
Figure 5: our novel supervised symbolic representation for discrim-
inative feature generation and the novel bag-of-patterns model for
building a discriminative feature vector. First, WEASEL extracts
normalized windows of varying lengths from a time series. Next,
each window is approximated using the Fourier transform, and the
real and imaginary Fourier values are kept that best separate TS from
different classes using the ANOVA F-test - as opposed to using the
truncated Fourier transform. These Fourier values are discretized
into a word based on information gain binning, which also chooses
discretization boundaries to best separate the TS classes; More detail



0 20 40 60 80 100 120 140

0

2

V
a
lu
e

Raw Time Series
A

5
0

 a
a

5
0

 a
a
 b

a
5
0

 a
a
 b

b
5
0

 b
a

5
0

 b
a
 a

a
5
0

 b
a
 b

b
5
0

 b
a
 ca

5
0

 b
a
 cb

5
0

 b
b

5
0

 b
b

 b
a

5
0

 b
b

 d
b

5
0

 ca
5
0

 cb
5
0

 cb
 d

b
5
0

 d
b

5
0

 d
b

 b
b

5
0

 d
b

 d
c

5
0

 d
c

0

2

4

C
o
u
n
ts

BOP: bigrams + w=50

7
5

 a
a

7
5

 a
a
 a

b

7
5

 a
a
 ca

7
5

 a
b

7
5

 a
b

 a
c

7
5

 a
c

7
5
 c

a

7
5

 ca
 a

a

0

2

4

C
o
u
n
ts

BOP:bigrams + w=75

0 20 40 60 80 100 120 140

0

2

V
a
lu
e

A

5
0

 a
a

5
0

 a
a
 b

a
5
0

 a
a
 b

b
5
0

 b
a

5
0

 b
a
 a

a
5
0

 b
a
 b

b
5
0

 b
a
 ca

5
0

 b
a
 cb

5
0

 b
b

5
0

 b
b

 b
a

5
0

 b
b

 d
b

5
0

 ca
5
0

 cb
5
0

 cb
 d

b
5
0

 d
b

5
0

 d
b

 b
b

5
0

 d
b

 d
c

5
0

 d
c

0

2

4

6
C
o
u
n
ts

7
5

 a
a

7
5

 a
a
 a

b

7
5

 a
a
 ca

7
5

 a
b

7
5

 a
b

 a
c

7
5

 a
c

7
5
 c

a

7
5

 ca
 a

a

0

2

C
o
u
n
ts

0 20 40 60 80 100 120 140

0

2

V
a
lu
e

B

5
0

 a
a

5
0

 a
a
 b

a
5
0

 a
a
 b

b
5
0

 b
a

5
0

 b
a
 a

a
5
0

 b
a
 b

b
5
0

 b
a
 ca

5
0

 b
a
 cb

5
0

 b
b

5
0

 b
b

 b
a

5
0

 b
b

 d
b

5
0

 ca
5
0

 cb
5
0

 cb
 d

b
5
0
 d

b
5
0

 d
b

 b
b

5
0

 d
b

 d
c

5
0

 d
c

0

2

4

C
o
u
n
ts

7
5

 a
a

7
5

 a
a
 a

b

7
5

 a
a
 ca

7
5

 a
b

7
5

 a
b

 a
c

7
5

 a
c

7
5

 ca

7
5

 ca
 a

a

0

2

C
o
u
n
ts

0 20 40 60 80 100 120 140

0

2

V
a
lu
e

B

5
0

 a
a

5
0

 a
a
 b

a
5
0

 a
a
 b

b
5
0

 b
a

5
0

 b
a
 a

a
5
0

 b
a
 b

b
5
0

 b
a
 ca

5
0

 b
a
 cb

5
0

 b
b

5
0

 b
b

 b
a

5
0

 b
b

 d
b

5
0

 ca
5
0

 cb
5
0

 cb
 d

b
5
0
 d

b
5
0

 d
b

 b
b

5
0

 d
b

 d
c

5
0

 d
c

0

2

C
o
u
n
ts

7
5

 a
a

7
5

 a
a
 a

b

7
5

 a
a
 ca

7
5

 a
b

7
5

 a
b

 a
c

7
5

 a
c

7
5

 ca

7
5

 ca
 a

a

0

2

C
o
u
n
ts

Time

Time

Time

Time

Figure 6: Discriminative feature vector: Four time series, two
from class ’A’ and two from class ’B’ are shown. Feature vec-
tors contain unigrams and bigrams for the two exemplary win-
dow lengths 50 and 75. The discriminative words are high-
lighted.

is given in Subsection 4.2. Finally, a single bag-of-patterns is built
from the words (unigrams), neighboring words (bigrams), and all
window lengths. To filter irrelevant features, the Chi-squared test is
applied to this bag-of-patterns (Subsection 4.1). As WEASEL builds
a highly discriminative feature vector, a fast linear time logistic
regression classifier is applied (Subsection 4.1).

BOP-based methods have a number of parameters, which heavily
influence their performance. Of particular importance is the window
length w . An optimal value for this parameter is typically learned
for each new dataset using techniques like cross-validation. This
does not only carry the danger of over-fitting (if the training samples
are biased compared to the to-be-classified TS), but also leads to
substantial training times. In contrast, WEASEL removes the need to
set this parameter, by constructing a single high-dimensional feature
vector, in which the whole feature space is encoded. Thus, each
feature in this vector is the concatenation of the concrete parameter
values: i.e., ’50 db’ (an unigram for length 50) or ’75 aa ca’ (a
bigram for length 75). All window-lengths (there are O(n) window
lengths), unigrams and bigrams are enumerated in this way in a
(sparse) feature vector. So, instead of training O(n) different models,
and picking the best one for prediction, we weigh each feature based
on its importance to predict a class label, and remove those that are
irrelevant.

Figure 6 illustrates our use of unigrams, bigrams and two exem-
plary window lengths. The depicted dataset contains two classes
’A’ and ’B’ with two samples each. The time series are very similar
and differences between these are difficult to spot, and are mostly
located between time stamps 80 and 100 to 130. The center (right)
column illustrates the features extracted for window length 50 (75).
Feature ’75 aa ca’ is characteristic for the A class, whereas the fea-
ture ’50 db’ is characteristic for the B class. Thus, we use different
window lengths, bigrams, and unigrams to capture subtle differences
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Figure 7: Influence of the word model for feature extraction.
From left to right: SFA words, our novel supervised represen-
tation words, and the weighed words after logistic regression.

between TS classes. We show the impact of varying window lengths
and bigrams to classification accuracy in Section 5.5.

4.1 Feature Extraction: A Novel Supervised
Symbolic Representation

A symbolic representation is used to transform a real-valued TS
window to a word using an alphabet of size c. Our representation is
based on SFA [37]. The problem with SFA is that it (a) filters the
high frequency components of the signal, just like a low-pass filter.
But for instance, the pitch (frequency) of a bird sound is relevant for
the species but lost after low-pass filtering. Furthermore, it (b) does
not distinguish between class labels when quantizing values of the
Fourier transform. Thus, there is a high likelihood of SFA words
to occur in different classes with roughly equal frequencies. For
classification, we need discriminative words for each class. Instead,
our approach is based on two steps:

(1) Discriminative approximation by applying feature selection
to the approximation step and keeping those Fourier values
whose distribution best separates the class labels in disjoint
groups, as opposed to using the first ones.

(2) Discriminative quantization by using information gain [31]
to minimize the entropy of the class labels for each split.
I.e., the majority of values in each partition correspond to
the same class label.

In Figure 7 we revisit our sample dataset. This time with a win-
dow length of 25. When using SFA words (left), the words are
evenly spread over the whole BOP for both prototypes. There is
no single feature whose absence or presence is characteristic for a
class. However, when using our novel supervised symbolic represen-
tation (center), we observe less distinct words, more frequent counts
and the word ’db’ is unique within the ’B’ class. When training a
logistic regression classifier on these words (right), the word ’db’
gets boosted and other words are filtered. Note, that the counts of
the word ’db’ differ for both representations, as it represents other
frequency ranges for both approaches.
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4.1.1 Discriminative Approximation using One-Way
ANOVA F-test.

For approximation, each TS is Fourier transformed first. We
aim at finding the top l real an imaginary Fourier values that best
separate between class labels for a set of TS samples, instead of
simply taking the first l ones. Figure 8 (left) shows the distribution
of the Fourier values for the sample-dataset. The Fourier value that
best separates between the classes is imag3 with the highest F-value
of 1.5 (bottom).

We use a one-way ANOVA F-test [25] to select those l real and
imaginary Fourier values, that best separate between class labels
for a set of TS samples, instead of simply taking the first l ones.
The one-way ANOVA F-test checks the hypothesis that two or more
groups have the same normal distribution around the mean. The
analysis is based on two estimates for the variance existing within
and between groups: mean square within (MSW ) and mean square
between (MSB ). The F-value is then defined as: F = MSB

MSW . When
used as part of feature selection, we are interested in the largest
F-values, equal to large differences between group means. We keep
those l real or imaginary Fourier values with the largest F-values. In
Figure 8 these are real0 and imag3 for l = 2 with F-values 0.6 and
1.5.

The ANOVA F-test assumes that the data follows a normal dis-
tribution with equal variance. The BOP (WEASEL) approach ex-
tracts subsequences for z-normalized time series. It has been shown
that subsequences extracted from z-normalized time series perfectly
mimic normal distribution [19]. Furthermore, the Fourier transform
of a normal distribution

f (x) =
1

σ
√
2π
· e
− −x

2
2σ 2

with µ = 0,σ = 1 results in a normal distribution of the Fourier
coefficients [7]:

F (t) =

∫
f (x) · e−itx = ei µσ e−

1
2 (σt )

2
= e−

1
2 (σt )

2

Thus, the Fourier coefficients follow a symmetrical and uni-modal
normal distribution with equal variance.

The ANOVA F-test further assumes that the samples are indepen-
dently drawn. To guarantee independence, we are extracting disjoint
subsequences, i.e., non-overlapping, to train the quantization inter-
vals. Using disjoint windows for sampling further decreases the
likelihood of over-fitting quantization intervals.

4.1.2 Discriminative Quantization using Entropy / Informa-
tion Gain.

A supervised quantization step is applied to find for each selected
real or imaginary Fourier value the best split points, so that in each
partition a majority of values correspond to the same class. Our
quantization is based on binning (bucketing): the value range is
partitioned into disjoint intervals, called bins. Each bin is labeled
by a symbol. A real value that falls into an interval is represented
by its symbol. Common methods to partition the value range in-
clude equi-depth or equi-width bins, as in SAX or SFA. These
ignore the class label distribution and splits are solely based on
the value distribution. Here we introduce entropy-based binning
(information gain [31]). This leads to disjoint feature sets. Let
Y = {(s1,y1), . . . , (sN ,yN )} be a list of value and class label pairs
with N unique class labels. The multi-class entropy is then given
by: Ent(Y ) =

∑
(si ,yi )∈Y −pyi log2 pyi , where pyi is the relative fre-

quency of label yi in Y . The entropy for a split point sp with all
labels on the left YL = {(si ,yi ) |si ≤ sp, (si ,yi ) ∈ Y } and all labels
on the right YR = {(si ,yi ) |si > sp, (si ,yi ) ∈ Y } is given by:

Ent(Y , sp) =
|YL |

|Y |
Ent(YL) +

|YR |

|Y |
Ent(YR ) (1)

The information gain for this split is given by:

Information Gain = Ent(Y ) − Ent(Y , sp) (2)

We fix the alphabet size c to 4, as it has been shown in the context
of BOP models that using a constant c = 4 is very robust over all TS
considered [21, 36, 38].

4.2 Feature Selection and Weighting:
Chi-squared Test and Logistic Regression

The dimensionality of this feature space is O(min(Nn2, cl )) for word
length l and c symbols. The number of TS N and length n affects
the actual word frequencies. But in the worst case each TS window
can only produces a distinct word, and there are Nn2 windows.

For common parameters like c = 4, l = 4, n = 256 this results in
a sparse vector with 44 = 256 dimensions for a TS. WEASEL uses
bigrams and O(n) window lengths, thus the dimensionality of the
feature space rises to O(min(Nn2, c2l · n)). For the previous set of
parameters this feature space explodes to up to 48 · 256 = 2563.

WEASEL uses the Chi-squared (χ2) test to identify the most
relevant features in each class to reduce this feature space to a
few hundred features prior to training the classifier. This statistical
test determines if for any feature the observed frequency within
a specific group significantly differs from the expected frequency,



assuming the data itself is discrete (nominal). Larger χ2-values
imply that a feature occurs more frequently within a specific class.
Thus, we keep those features with χ2-values above a threshold. This
highlights subtle distinctions between classes. All other features can
be considered superfluous and are removed. On average this reduces
the size of the feature space by 30 − 70% to 104 up to 105 features.
In our pipeline, the main aim of this threshold is to be high enough
for the logistic regression classifier to train a model in reasonable
time (when set too low, training takes longer).

We use sparse vectors to store the features for each time series,
as each feature vector only contains a few features after feature
selection. We implemented our classifier using liblinear [11] as it
scales linearly with the dimensionality of the feature space [29],
which is bound by O(min(Nn2, c2l · n)). This results in a moderate
runtime compared to Shapelet or ensemble classifiers with cubic
and bi-quadratic runtimes in n, which is orders of magnitude slower
(compare Section 5.3).

5 EVALUATION
5.1 Experimental Setup
We mostly evaluated our WEASEL classifier using the full UCR
benchmark dataset of 85 TSC problems [43]1. Furthermore, we
compared its performance on two real-life datasets from the smart
grid domain; results are reported in Section 5.6. Each UCR dataset
provides a train and test split set which we use unchanged to make
our results comparable to prior publications. It can be computation-
ally very expensive to run classifiers and we spent 800 CPU days for
training. Thus, we had to limit our comparison of WEASEL to the
9 state-of-the-art TSC methods (following [2]), namely COTE [3],
BOSS [36], BOSS VS [35], LS [14], EE (PROP) [22], TSBF [4],
ST [6], and the baselines DTW and DTW CV [22]. All experiments
ran on a server running LINUX with 2xIntel Xeon E5-2630v3 and
64GB RAM, using JAVA JDK x64 1.8. We measured runtimes of all
methods using the implementation given by the authors [5] wherever
possible, resorting to the code by [2] if this was not the case. For
DTW and DTW CV, we make use of the state-of-the-art cascad-
ing lower bounds from [32]. We measure CPU time, to address
parallel and single threaded codes. Regarding accuracy, we report
numbers published by each author [1, 3, 4, 14], complemented by
the numbers published by [40], for those datasets where results are
missing (due to the growth of the benchmark datasets). All numbers
are accuracy on the test split. For WEASEL we performed 10-fold
cross-validation on the training datasets to find the most appropriate
value for the SFA word length l ∈ [4, 6, 8]. We kept c = 4 and
chi = 2 constant, as varying these values has only negligible effect
on accuracy (data not shown). We used liblinear with default pa-
rameters (bias = 1,p = 0.1 and solver L2R_LR_DUAL). To ensure
reproducible results, we provide the WEASEL source code and the
raw measurement sheets. [42].

5.2 Accuracy
Figure 9 shows a critical difference diagram (introduced in [9]) over
the average ranks of the different TSC methods. Classifiers with the
lowest (best) ranks are to the right. The group of classifiers that are

1The UCR archive has recently been extended from 45 to 85 datasets.

CD

10 9 8 7 6 5 4 3 2 1

3.25 COTE
3.6 WEASEL

4.48 ST
4.97 BOSS

5.4 EE (PROP)5.72LS
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7.221-NN DTW CV

8.081-NN DTW

Figure 9: Average ranks on the 85 UCR datasets. WEASEL is
as accurate as state of the art.

not significantly different in their rankings are connected by a bar.
The critical difference (CD) length represents statistically significant
differences. The 1-NN DTW and 1-NN DTW CV classifiers are
commonly used as benchmarks [22]. Both perform significantly
worse than all other methods. ST, LS and BOSS have a similar rank
and competitive accuracies. WEASEL has the lowest rank among all
core classifiers (DTW, TSBF, LS, BOSS, BOSS VS, ST). Ensemble
classifiers generally show compelling accuracies, with COTE being
the most accurate. The advantage of WEASEL is its much lower
runtime, which we address in Section 5.3.

5.3 Scalability
Figure 10 plots for all TSC methods the total runtime on the x-axis in
log scale vs the average rank on the y-axis for prediction. Runtimes
include all preprocessing steps like feature extraction or selection.
Because of the high wall-clock time of some classifiers, we had to
limit this experiment to the 45 core UCR datasets, encompassing
roughly N = 17000 train and N = 62000 test time series. The total
time spent for training were 800 CPU days. Train times vary from
more than 300 CPU days (EE prop and COTE) to 8 CPU days for
DTW CV. WEASEL and BOSS have similar train times of one CPU
day and as such train one to two orders of magnitude faster than the
other core classifiers.

There are fast methods (BOSS VS, TSBF, LS, DTW CV) that
require a few ms per prediction, but have a low average rank; and
there are accurate methods (ST; BOSS; EE; COTE) that require
hundredths of ms to seconds per prediction. The two ensemble
methods in our comparison, EE PROP and COTE, show the highest
prediction times. WEASEL is consistently among the best and
fastest predicting methods, and competitors are (a) either at the same
level of quality (COTE) but much slower or (b) faster but much
worse in accuracy (LS, DTW CV, TSBF, or BOSS VS). As for all
BoP approaches, WEASEL’S train times are among the lowest.

Of course, WEASEL is not faster and more accurate than every
single competitor. For example, DTW CV has on average lower
prediction times than WEASEL at a significantly lower accuracy.
The complexity of DTW CV is O(Nnr ) with warping window size r .
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Figure 10: Average single prediction and training times in log
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processing steps (feature extraction, bop model building, etc.)
and cross-validation costs for model training. WEASEL has a
similar average accuracy as COTE but is two orders of magni-
tude faster. A single prediction takes 38ms on average.

So, there is always a trade-off between accuracy and prediction/train
times. However, this experiment underlines that WEASEL offers a
very high accuracy at fast prediction and train times.

5.4 Accuracy by datasets and by domain
In this experiment we found that WEASEL performs well in-
dependent of the domain. We studied the individual accuracy
of each method on each of the 85 different datasets, and also
grouped datasets by domain to see if different methods have domain-
dependent strengths or weaknesses. We used the predefined grouping
of the benchmark data into four types: synthetic, motion sensors,
sensor readings and image outlines. For this experiment, we only
consider the non-ensemble classifiers. Figure 11 shows the accu-
racies of WEASEL (black line) vs. the six core classifiers ST, LS,
BOSS, DTW, DTW CV, TSBF (orange area).

Overall, the performance of WEASEL is very competitive for
almost all datasets. The black line is mostly very close to the upper
outline of the orange area, indicating that WEASEL’s performance
is close to that of its best competitor. In total WEASEL has 36 out of
85 wins against the group of six core classifiers. On 69 (78) datasets
it is not more than 5% (10%) to the best classifier. Overall, WEASEL
has the highest percentage of wins in the groups of sensor readings,

synthetic and image outline datasets. Within the group of motion
sensors, it performs equally good as LS and ST.

The main advantage of WEASEL is that it adapts to variable-
length characteristic substructures by calculating discriminative fea-
tures in combination with noise filtering. Thus, all datasets that
are composed of characteristic substructures benefit from the use
of WEASEL. This applies to most sensor readings like all EEG or
ECG signals, but also mass spectrometry, or recordings of insect
wing-beats. These are typically noisy and have variable-length, char-
acteristic substructures that can appear at arbitrary time stamps [16].
ST also fits to this kind of data but, in contrast to WEASEL, is
sensitive to noise.

5.5 Influence of Design Decisions on WEASEL’s
Accuracy

We look into the impact of design decisions on the WEASEL clas-
sifier. Figure 12 shows the average ranks of the WEASEL classi-
fier where each extension is disabled or enabled: (a) "one (single)
window length, supervised and bigrams", (b) "(varying lengths) un-
supervised and unigrams", (c) "(varying lengths) unsupervised and
bigrams", (d) "(varying lengths) supervised and unigrams", and (e)
"supervised and bigrams". The single window approach is least accu-
rate. This underlines that the choice of window lengths is crucial for
accuracy. The unsupervised symbolic representation approach with
unigrams is equal to the standard BOP model. Using a supervised
symbolic representation or bigrams slightly improves the ranks. All
of WEASEL’s extensions combined, significantly improve the ranks
(unigrams, bigrams, varying lengths).

5.6 Use Case: Smart Plugs
Appliance load monitoring has become an important tool for en-
ergy savings [12, 13]. We tested the performance of different TSC
methods on data obtained from intrusive load monitoring (ILM),
where energy consumption is separately recorded at every electric
device. We used two publicly available datasets ACS-F1 [13] and
PLAID [12]. These datasets capture the power consumption of typ-
ical appliances. Each appliance has a characteristic shape. Some
appliances show repetitive substructures while others are distorted
by noise. The recordings are characterized by long idle periods and
some high bursts of energy consumption when the appliance is active.
When active, appliances show different operational states. Figure 2
and 13 show the accuracy and runtime of WEASEL compared to
state of the art. WEASEL scores the highest accuracies with 92%
and 91.8% for both datasets. With a prediction time of 10 and 100
ms it is also fast. Train times of WEASEL are comparable to that
of DTW CV and orders lower than that of the other high accuracy
classifiers (data not shown). On the large PLAID dataset WEASEL
has a significantly lower prediction time than its competitors, while
on the smaller ACS-F1 dataset the prediction time is slightly higher
than that of DTW or BOSS. 1-NN classifiers such as BOSS and
DTW scale with the size of the train dataset. Thus, for larger train
datasets, they become slower. At the same time, for small datasets
like PLAID, they can be quite fast. The results show that our ap-
proach naturally adapts to appliance load monitoring. These data
show how WEASEL automatically adapts to idle and active periods
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Figure 12: Impact of design decisions on ranks. The WEASEL
(supervised+bigrams) classifier has the lowest rank over all
datasets.

and short, repetitive characteristic substructures, which were also im-
portant in the sensor readings or image outline domains (Section 5.4).
Note that the authors of the ACS-F1 dataset scored 93% [34] using a
hidden Markov model and a manual feature set. Unfortunately their
code is not available and the runtime was not reported. Our accuracy
is close to theirs, while our approach was not specially adapted for
the domain.

6 CONCLUSION
In this work, we have presented WEASEL, a novel TSC method
following the bag-of-pattern approach which achieves highly com-
petitive classification accuracies and is very fast, making it applicable
in domains with high runtime and quality constraints. The novelty

of WEASEL is its carefully engineered feature space using statisti-
cal feature selection, word co-occurrences, and a supervised sym-
bolic representation for generating discriminative words. Thereby,
WEASEL assigns high weights to characteristic, variable-length
substructures of a TS. In our evaluation on altogether 87 datasets,
WEASEL is consistently among the best and fastest methods, and
competitors are either at the same level of quality but much slower
or faster but much worse in accuracy.
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